PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  clav-P1.12

Theorem clav-P1.12 68
Description: Clavious's Law.

The other form is nclav-P1.14 73.

Assertion
Ref Expression
clav-P1.12 ((¬ 𝜑𝜑) → 𝜑)

Proof of Theorem clav-P1.12
StepHypRef Expression
1 poe-P1.11a 65 . . . 4 𝜑 → (𝜑 → ¬ (¬ 𝜑𝜑)))
21axL2.SH 31 . . 3 ((¬ 𝜑𝜑) → (¬ 𝜑 → ¬ (¬ 𝜑𝜑)))
32axL3.AC.SH 47 . 2 ((¬ 𝜑𝜑) → ((¬ 𝜑𝜑) → 𝜑))
43rae-P1.5.SH 38 1 ((¬ 𝜑𝜑) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  clav-P1.12.AC.SH  69  clav-P1.12.2AC.SH  70  dneg-P1.13a  71  nclav-P1.14  73
  Copyright terms: Public domain W3C validator