PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL3.AC.SH

Theorem axL3.AC.SH 47
Description: Deductive Form of ax-L3 13.
Hypothesis
Ref Expression
axL3.AC.SH.1 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
Assertion
Ref Expression
axL3.AC.SH (𝛾 → (𝜓𝜑))

Proof of Theorem axL3.AC.SH
StepHypRef Expression
1 axL3.AC.SH.1 . 2 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
2 ax-L3 13 . . . 4 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
32axL1.SH 30 . . 3 (𝛾 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
43rcp-FR1.SH 40 . 2 ((𝛾 → (¬ 𝜑 → ¬ 𝜓)) → (𝛾 → (𝜓𝜑)))
51, 4ax-MP 14 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  clav-P1.12  68
  Copyright terms: Public domain W3C validator