PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL1.SH

Theorem axL1.SH 30
Description: Inference from ax-L1 11.
Hypothesis
Ref Expression
axL1.SH.1 𝜑
Assertion
Ref Expression
axL1.SH (𝜓𝜑)

Proof of Theorem axL1.SH
StepHypRef Expression
1 axL1.SH.1 . 2 𝜑
2 ax-L1 11 . 2 (𝜑 → (𝜓𝜑))
31, 2ax-MP 14 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-MP 14
This theorem is referenced by:  mae-P1.1  33  syl-P1.2  34  rcp-FR2  41  rcp-FR3  43  axL1.AC.SH  45  axL2.AC.SH  46  axL3.AC.SH  47  imcomm-P1.6.AC.SH  50  imsubr-P1.7a.AC.SH  53  imsubl-P1.7b.AC.SH  56  mpt-P1.8.AC.2SH  58  mpt-P1.8.2AC.2SH  59  mpt-P1.8.3AC.2SH  60  sylt-P1.9.AC.2SH  62  sylt-P1.9.2AC.2SH  63  poe-P1.11b.AC.2SH  67  clav-P1.12.AC.SH  69  clav-P1.12.2AC.SH  70  clav-P1.14.AC.SH  74  nclav-P1.14.2AC.SH  75  trnsp-P1.15b.AC.SH  79  trnsp-P1.15c.AC.SH  82  trnsp-P1.15d.AC.SH  84  trnsp-P1.15d.2AC.SH  85  pfbycont-P1.16  86  pfbycont-P1.16.AC.2SH  87  pfbycase-P1.17  88  pfbycase-P1.17.AC.2SH  90  import-L2.1a  91  simpr-L2.2b  97  bifwd-P2.5a.AC.SH  113  bifwd-P2.5a.2AC.SH  114  birev-P2.5b.AC.SH  117  birev-P2.5b.2AC.SH  118  bicmb-P2.5c  119  bicmb-P2.5c.AC.2SH  121  bicmb-P2.5c.2AC.2SH  122  bitrns-P2.6c  126  simpl-P2.9a.AC.SH  135  simpr-P2.9b.AC.SH  137  cmb-P2.9c.AC.2SH  139  import-P2.10a  140  export-P2.10b  142  orintl-P2.11a.AC.SH  147  orintr-P2.11b.AC.SH  149  orelim-P2.11c.AC.3SH  151  truejust-P2.13  154  ndtruei-P3.17  182
  Copyright terms: Public domain W3C validator