PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bicmb-P2.5c

Theorem bicmb-P2.5c 119
Description: '' Combine Implications.
Assertion
Ref Expression
bicmb-P2.5c ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))

Proof of Theorem bicmb-P2.5c
StepHypRef Expression
1 cmb-L2.3 99 . 2 ((𝜑𝜓) → ((𝜓𝜑) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
2 dfbiif-P2.3a 108 . . . 4 (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
32axL1.SH 30 . . 3 ((𝜓𝜑) → (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
43axL1.SH 30 . 2 ((𝜑𝜓) → ((𝜓𝜑) → (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))))
51, 4mpt-P1.8.2AC.2SH 59 1 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bicmb-P2.5c.2SH  120  bicmb-P2.5c.AC.2SH  121  bicmb-P2.5c.2AC.2SH  122
  Copyright terms: Public domain W3C validator