| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bicmb-P2.5c | |||
| Description: '↔' Combine Implications. |
| Ref | Expression |
|---|---|
| bicmb-P2.5c | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmb-L2.3 99 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 2 | dfbiif-P2.3a 108 | . . . 4 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | axL1.SH 30 | . . 3 ⊢ ((𝜓 → 𝜑) → (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) |
| 4 | 3 | axL1.SH 30 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)))) |
| 5 | 1, 4 | mpt-P1.8.2AC.2SH 59 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: bicmb-P2.5c.2SH 120 bicmb-P2.5c.AC.2SH 121 bicmb-P2.5c.2AC.2SH 122 |
| Copyright terms: Public domain | W3C validator |