PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bicmb-P2.5c.2SH

Theorem bicmb-P2.5c.2SH 120
Description: Inference from bicmb-P2.5c 119.
Hypotheses
Ref Expression
bicmb-P2.5c.2SH.1 (𝜑𝜓)
bicmb-P2.5c.2SH.2 (𝜓𝜑)
Assertion
Ref Expression
bicmb-P2.5c.2SH (𝜑𝜓)

Proof of Theorem bicmb-P2.5c.2SH
StepHypRef Expression
1 bicmb-P2.5c.2SH.2 . 2 (𝜓𝜑)
2 bicmb-P2.5c.2SH.1 . . 3 (𝜑𝜓)
3 bicmb-P2.5c 119 . . 3 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
42, 3ax-MP 14 . 2 ((𝜓𝜑) → (𝜑𝜓))
51, 4ax-MP 14 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  biref-P2.6a  123  truejust-P2.13  154
  Copyright terms: Public domain W3C validator