PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truejust-P2.13

Theorem truejust-P2.13 154
Description: Justification Theorem for df-true-D2.4 155.
Assertion
Ref Expression
truejust-P2.13 ((∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) ↔ (∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦))

Proof of Theorem truejust-P2.13
StepHypRef Expression
1 id-P1.4 36 . . 3 (∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦)
21axL1.SH 30 . 2 ((∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → (∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦))
3 id-P1.4 36 . . 3 (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)
43axL1.SH 30 . 2 ((∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦) → (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
52, 4bicmb-P2.5c.2SH 120 1 ((∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) ↔ (∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator