PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bicmb-P2.5c.AC.2SH

Theorem bicmb-P2.5c.AC.2SH 121
Description: Deductive Form of bicmb-P2.5c 119.
Hypotheses
Ref Expression
bicmb-P2.5c.AC.2SH.1 (𝛾 → (𝜑𝜓))
bicmb-P2.5c.AC.2SH.2 (𝛾 → (𝜓𝜑))
Assertion
Ref Expression
bicmb-P2.5c.AC.2SH (𝛾 → (𝜑𝜓))

Proof of Theorem bicmb-P2.5c.AC.2SH
StepHypRef Expression
1 bicmb-P2.5c.AC.2SH.2 . 2 (𝛾 → (𝜓𝜑))
2 bicmb-P2.5c.AC.2SH.1 . . . 4 (𝛾 → (𝜑𝜓))
3 bicmb-P2.5c 119 . . . . . 6 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
43axL1.SH 30 . . . . 5 (𝛾 → ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓))))
54rcp-FR1.SH 40 . . . 4 ((𝛾 → (𝜑𝜓)) → (𝛾 → ((𝜓𝜑) → (𝜑𝜓))))
62, 5ax-MP 14 . . 3 (𝛾 → ((𝜓𝜑) → (𝜑𝜓)))
76rcp-FR1.SH 40 . 2 ((𝛾 → (𝜓𝜑)) → (𝛾 → (𝜑𝜓)))
81, 7ax-MP 14 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bisym-P2.6b  124  subneg-P2.7  127  subiml-P2.8a  128  subimr-P2.8b  130  ndbii-P3.13  178
  Copyright terms: Public domain W3C validator