PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml-P2.8a

Theorem subiml-P2.8a 128
Description: Left Substitution Law for ''.
Assertion
Ref Expression
subiml-P2.8a ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem subiml-P2.8a
StepHypRef Expression
1 birev-P2.5b 115 . . 3 ((𝜑𝜓) → (𝜓𝜑))
21imsubl-P1.7b.AC.SH 56 . 2 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
3 bifwd-P2.5a 111 . . 3 ((𝜑𝜓) → (𝜑𝜓))
43imsubl-P1.7b.AC.SH 56 . 2 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
52, 4bicmb-P2.5c.AC.2SH 121 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  subiml-P2.8a.SH  129
  Copyright terms: Public domain W3C validator