PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml-P2.8a.SH

Theorem subiml-P2.8a.SH 129
Description: Inference from subiml-P2.8a 128.
Hypothesis
Ref Expression
subiml-P2.8a.SH.1 (𝜑𝜓)
Assertion
Ref Expression
subiml-P2.8a.SH ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem subiml-P2.8a.SH
StepHypRef Expression
1 subiml-P2.8a.SH.1 . 2 (𝜑𝜓)
2 subiml-P2.8a 128 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
31, 2ax-MP 14 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  rcp-NDSEP3  186  rcp-NDSEP4  187  rcp-NDSEP5  188  rcp-NDJOIN3  189  rcp-NDJOIN4  190  rcp-NDJOIN5  191
  Copyright terms: Public domain W3C validator