| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subiml-P2.8a.SH | |||
| Description: Inference from subiml-P2.8a 128. |
| Ref | Expression |
|---|---|
| subiml-P2.8a.SH.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subiml-P2.8a.SH | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subiml-P2.8a.SH.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | subiml-P2.8a 128 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ax-MP 14 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: rcp-NDSEP3 186 rcp-NDSEP4 187 rcp-NDSEP5 188 rcp-NDJOIN3 189 rcp-NDJOIN4 190 rcp-NDJOIN5 191 |
| Copyright terms: Public domain | W3C validator |