PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDSEP5

Theorem rcp-NDSEP5 188
Description: ( 1 2 3 4 5 ) ( ( 1 2 3 4 ) 5 ).
Hypothesis
Ref Expression
rcp-NDSEP5.1 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
Assertion
Ref Expression
rcp-NDSEP5 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑)

Proof of Theorem rcp-NDSEP5
StepHypRef Expression
1 rcp-NDSEP5.1 . 2 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
2 df-rcp-AND5 165 . . . 4 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) ↔ ((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅))
32subiml-P2.8a.SH 129 . . 3 (((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑) ↔ (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑))
43bifwd-P2.5a.SH 112 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑) → (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑))
51, 4ax-MP 14 1 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-rcp-AND5 165
This theorem is referenced by:  rcp-NDNEGI5  222  rcp-NDIMI5  227  rcp-NDORE5  238  rcp-FALSENEGI5  437
  Copyright terms: Public domain W3C validator