PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FALSENEGI5

Theorem rcp-FALSENEGI5 437
Description: '¬' Introduction with ''.
Hypothesis
Ref Expression
rcp-FALSENEGI5.1 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → ⊥)
Assertion
Ref Expression
rcp-FALSENEGI5 ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝛾₅)

Proof of Theorem rcp-FALSENEGI5
StepHypRef Expression
1 rcp-FALSENEGI5.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → ⊥)
21rcp-NDSEP5 188 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → ⊥)
32falsenegi-P4.18 432 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝛾₅)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-false 157  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND5 165
This theorem is referenced by:  rcp-FALSERAA5  525
  Copyright terms: Public domain W3C validator