PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falsenegi-P4.18

Theorem falsenegi-P4.18 432
Description: Derived Natural Deduction Rule Using ''.
Hypothesis
Ref Expression
falsenegi-P4.18.1 ((𝛾𝜑) → ⊥)
Assertion
Ref Expression
falsenegi-P4.18 (𝛾 → ¬ 𝜑)

Proof of Theorem falsenegi-P4.18
StepHypRef Expression
1 falsenegi-P4.18.1 . 2 ((𝛾𝜑) → ⊥)
21falseimpoe-P4.4c 383 . 2 ((𝛾𝜑) → ¬ ⊥)
31, 2rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  rcp-FALSENEGI2  434  rcp-FALSENEGI3  435  rcp-FALSENEGI4  436  rcp-FALSENEGI5  437  falseie-P4.22b  445  falseraa-P4  520  allnegex-P7-L1  956  exnegallint-P7  1047
  Copyright terms: Public domain W3C validator