| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > falsenegi-P4.18 | |||
| Description: Derived Natural Deduction Rule Using '⊥'. † |
| Ref | Expression |
|---|---|
| falsenegi-P4.18.1 | ⊢ ((𝛾 ∧ 𝜑) → ⊥) |
| Ref | Expression |
|---|---|
| falsenegi-P4.18 | ⊢ (𝛾 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falsenegi-P4.18.1 | . 2 ⊢ ((𝛾 ∧ 𝜑) → ⊥) | |
| 2 | 1 | falseimpoe-P4.4c 383 | . 2 ⊢ ((𝛾 ∧ 𝜑) → ¬ ⊥) |
| 3 | 1, 2 | rcp-NDNEGI2 219 | 1 ⊢ (𝛾 → ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: rcp-FALSENEGI2 434 rcp-FALSENEGI3 435 rcp-FALSENEGI4 436 rcp-FALSENEGI5 437 falseie-P4.22b 445 falseraa-P4 520 allnegex-P7-L1 956 exnegallint-P7 1047 |
| Copyright terms: Public domain | W3C validator |