PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exnegallint-P7

Theorem exnegallint-P7 1047
Description: "There exists a negative" Implies "Not for all".

This direction is deducible with intuitionist logic.

Assertion
Ref Expression
exnegallint-P7 (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)

Proof of Theorem exnegallint-P7
StepHypRef Expression
1 ndnfrex1-P7.8 833 . . . 4 𝑥𝑥 ¬ 𝜑
2 ndnfrall1-P7.7 832 . . . 4 𝑥𝑥𝜑
31, 2ndnfrand-P7.4.RC 877 . . 3 𝑥(∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑)
4 ndnfrv-P7.1 826 . . 3 𝑥
5 rcp-NDASM2of2 194 . . . . 5 ((∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝜑)
65alle-P7 941 . . . 4 ((∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑) → 𝜑)
76nimpoe-P4.4b 380 . . 3 ((∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑) → (¬ 𝜑 → ⊥))
8 rcp-NDASM1of2 193 . . 3 ((∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑) → ∃𝑥 ¬ 𝜑)
93, 4, 7, 8exe-P7 955 . 2 ((∃𝑥 ¬ 𝜑 ∧ ∀𝑥𝜑) → ⊥)
109falsenegi-P4.18 432 1 (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator