| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exe-P7 | |||
| Description: Simplified '∃' Elimination Law. †
For the original form, using explicit substitution, see ndexe-P7.20 845. |
| Ref | Expression |
|---|---|
| exe-P7.1 | ⊢ Ⅎ𝑥𝛾 |
| exe-P7.2 | ⊢ Ⅎ𝑥𝜓 |
| exe-P7.3 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| exe-P7.4 | ⊢ (𝛾 → ∃𝑥𝜑) |
| Ref | Expression |
|---|---|
| exe-P7 | ⊢ (𝛾 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exe-P7.4 | . 2 ⊢ (𝛾 → ∃𝑥𝜑) | |
| 2 | exe-P7.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 3 | exe-P7.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | exe-P7.3 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 5 | 2, 3, 4 | exia-P7 953 | . 2 ⊢ (𝛾 → (∃𝑥𝜑 → 𝜓)) |
| 6 | 1, 5 | ndime-P3.6 171 | 1 ⊢ (𝛾 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: allnegex-P7-L1 956 exe-P7r 998 exe-P7r.VR1of2 999 exe-P7r.VR2of2 1000 exe-P7r.VR12of2 1001 exe-P7r.RC 1002 exnegallint-P7 1047 qimeqex-P7-L1 1054 qimeqex-P7-L2 1055 |
| Copyright terms: Public domain | W3C validator |