PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exe-P7

Theorem exe-P7 955
Description: Simplified '' Elimination Law.

For the original form, using explicit substitution, see ndexe-P7.20 845.

Hypotheses
Ref Expression
exe-P7.1 𝑥𝛾
exe-P7.2 𝑥𝜓
exe-P7.3 (𝛾 → (𝜑𝜓))
exe-P7.4 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
exe-P7 (𝛾𝜓)

Proof of Theorem exe-P7
StepHypRef Expression
1 exe-P7.4 . 2 (𝛾 → ∃𝑥𝜑)
2 exe-P7.1 . . 3 𝑥𝛾
3 exe-P7.2 . . 3 𝑥𝜓
4 exe-P7.3 . . 3 (𝛾 → (𝜑𝜓))
52, 3, 4exia-P7 953 . 2 (𝛾 → (∃𝑥𝜑𝜓))
61, 5ndime-P3.6 171 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  allnegex-P7-L1  956  exe-P7r  998  exe-P7r.VR1of2  999  exe-P7r.VR2of2  1000  exe-P7r.VR12of2  1001  exe-P7r.RC  1002  exnegallint-P7  1047  qimeqex-P7-L1  1054  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator