PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exia-P7

Theorem exia-P7 953
Description: Introduce Existential Quantifier as Antecedent.
Hypotheses
Ref Expression
exia-P7.1 𝑥𝛾
exia-P7.2 𝑥𝜓
exia-P7.3 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
exia-P7 (𝛾 → (∃𝑥𝜑𝜓))

Proof of Theorem exia-P7
StepHypRef Expression
1 exia-P7.1 . . 3 𝑥𝛾
2 exia-P7.3 . . 3 (𝛾 → (𝜑𝜓))
31, 2alloverimex-P7.GENF 949 . 2 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
4 exia-P7.2 . . . 4 𝑥𝜓
54nfrexgen-P7.CL 932 . . 3 (∃𝑥𝜓𝜓)
65rcp-NDIMP0addall 207 . 2 (𝛾 → (∃𝑥𝜓𝜓))
73, 6syl-P3.24 259 1 (𝛾 → (∃𝑥𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  exia-P7.RC  954  exe-P7  955  dfnfreealtonlyif-P7  966  exia-P7r  1011  exia-P7r.VR1of2  1012  exia-P7r.VR2of2  1013  exia-P7r.VR12of2  1014
  Copyright terms: Public domain W3C validator