HomeHome bfol.mm Proof Explorer
Theorem List (p. 10 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 901-1000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremndsubmultl-P7.24d.RC 901 Inference Form of ndsubmultl-P7.24d 854.
𝑡 = 𝑢       (𝑡𝑤) = (𝑢𝑤)
 
Theoremndsubmultr-P7.24e.RC 902 Inference Form of ndsubmultr-P7.24e 855.
𝑡 = 𝑢       (𝑤𝑡) = (𝑤𝑢)
 
Theoremndsubmultd-P7.RC 903 Inference Form of ndsubmultd-P7 859.
𝑠 = 𝑡    &   𝑢 = 𝑤       (𝑠𝑢) = (𝑡𝑤)
 
8.1.2.4  Closed Forms of Natural Deduction Rules.
 
Theoremndnfrneg-P7.2.CL 904 Closed Form of ndnfrneg-P7.2 827.
(Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
 
Theoremndnfrim-P7.3.CL 905 Closed Form of ndnfrim-P7.3 828.
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theoremndnfrand-P7.4.CL 906 Closed Form of ndnfrand-P7.4 829.
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theoremndnfror-P7.5.CL 907 Closed Form of ndnfror-P7.5 830.
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theoremndnfrbi-P7.6.CL 908 Closed Form of ndnfrbi-P7.6 831.
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theoremndalle-P7.18.CL 909 Closed Form of ndalle-P7.18 843.
(∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
 
Theoremndexi-P7.19.CL 910 Closed Form of ndexi-P7.19 844.
([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremndsubeql-P7.22a.CL 911 Closed Form of ndsubeql-P7.22a 847.
(𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))
 
Theoremndsubeqr-P7.22b.CL 912 Closed Form of ndsubeqr-P7.22b 848.
(𝑡 = 𝑢 → (𝑤 = 𝑡𝑤 = 𝑢))
 
Theoremndsubeqd-P7.CL 913 Closed Form of ndsubeqd-P7 856.
((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠 = 𝑢𝑡 = 𝑤))
 
Theoremndsubelofl-P7.23a.CL 914 Closed Form of ndsubelofl-P7.23a 849.
(𝑡 = 𝑢 → (𝑡𝑤𝑢𝑤))
 
Theoremndsubelofr-P7.23b.CL 915 Closed Form of ndsubelofr-P7.23b 850.
(𝑡 = 𝑢 → (𝑤𝑡𝑤𝑢))
 
Theoremndsubelofd-P7.CL 916 Closed Form of ndsubelofd-P7 857.
((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠𝑢𝑡𝑤))
 
Theoremndsubsucc-P7.24a.CL 917 Closed Form of ndsubsucc-P7.24a 851.
(𝑡 = 𝑢 → s‘𝑡 = s‘𝑢)
 
Theoremndsubaddl-P7.24b.CL 918 Closed Form of ndsubaddl-P7.24b 852.
(𝑡 = 𝑢 → (𝑡 + 𝑤) = (𝑢 + 𝑤))
 
Theoremndsubaddr-P7.24c.CL 919 Closed Form of ndsubaddr-P7.24c 853.
(𝑡 = 𝑢 → (𝑤 + 𝑡) = (𝑤 + 𝑢))
 
Theoremndsubaddd-P7.CL 920 Closed Form of ndsubaddd-P7 858.
((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠 + 𝑢) = (𝑡 + 𝑤))
 
Theoremndsubmultl-P7.24d.CL 921 Closed Form of ndsubmultl-P7.24d 854.
(𝑡 = 𝑢 → (𝑡𝑤) = (𝑢𝑤))
 
Theoremndsubmultr-P7.24e.CL 922 Closed Form of ndsubmultr-P7.24e 855.
(𝑡 = 𝑢 → (𝑤𝑡) = (𝑤𝑢))
 
Theoremndsubmultd-P7.CL 923 Closed Form of ndsubmultd-P7 859.
((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠𝑢) = (𝑡𝑤))
 
8.2  Recovering Hilbert Axioms and Definitions.
 
8.2.1  Axiom L6 (Existential Form).
 
Theoremlemma-L7.01a 924* Proper Substitution Over Equality Lemma.

'𝑥' cannot occur in '𝑡' or '𝑢'.

([𝑡 / 𝑥] 𝑥 = 𝑢𝑡 = 𝑢)
 
8.2.1.1  Recovered Axiom L6 (Existential Form).
 
TheoremaxL6ex-P7 925* Existential Form of ax-L6 18, Derived from Natural Deduction Rules.

'𝑥' cannot occur in '𝑡'.

𝑥 𝑥 = 𝑡
 
8.2.2  Generalization Rule and Axiom L5.
 
Theoremnfrthm-P7 926 Every Variable is ENF in a Theorem.
𝜑       𝑥𝜑
 
Theorempsubnfrv-P7 927* Proper Substitution Applied To ENF Variable (variable restriction).

'𝑥' cannot occur in '𝑡'.

𝑥𝜑       ([𝑡 / 𝑥]𝜑𝜑)
 
Theoremnfrgen-P7 928 ENF In General For.
𝑥𝜑    &   (𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremnfrgen-P7.RC 929 Inference Form of nfrgen-P7 928.
𝑥𝜑    &   𝜑       𝑥𝜑
 
Theoremnfrgen-P7.CL 930 Closed Form of nfrgen-P7 928.
𝑥𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremnfrexgen-P7 931 Dual Form of nfrgen-P7 928.
𝑥𝜑    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜑)
 
Theoremnfrexgen-P7.CL 932 Closed Form of nfrexgen-P7 931.
𝑥𝜑       (∃𝑥𝜑𝜑)
 
8.2.2.1  Recovered Generalization Rule.
 
TheoremaxGEN-P7 933 Generalization Rule (ax-GEN 15), Derived from Natural Deduction Rules.
𝜑       𝑥𝜑
 
8.2.2.2  Recovered Axiom L5.
 
TheoremaxL5-P7 934* ax-L5 17 Derived from Natural Deduction Rules.
(𝜑 → ∀𝑥𝜑)
 
TheoremaxL5ex-P7 935* Existential Form of axL5-P7 934.
(∃𝑥𝜑𝜑)
 
8.2.3  Axiom L4.
 
Theoremeqsym-P7 936 Equivalence Property: '=' Symmetry.
(𝛾𝑡 = 𝑢)       (𝛾𝑢 = 𝑡)
 
Theoremeqsym-P7.CL 937 Closed Form of eqsym-P7 936.
(𝑡 = 𝑢𝑢 = 𝑡)
 
Theoremeqsym-P7.CL.SYM 938 Closed Symmetric Form of eqsym-P7 936.
(𝑡 = 𝑢𝑢 = 𝑡)
 
Theorempsubinv-P7 939* Proper Substitution Inverse Property.
𝑦𝜑       ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
 
Theorempsubid-P7 940 Proper Substitution Identity Property.
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremalle-P7 941 Simplified '' Elimination Law.

This is also known as the Specialization Law. For the original form, using explicit substitution, see ndalle-P7.18 843.

(𝛾 → ∀𝑥𝜑)       (𝛾𝜑)
 
Theoremalle-P7.CL 942 Closed Form of alle-P7 941.
(∀𝑥𝜑𝜑)
 
Theoremlemma-L7.02a-L1 943* Lemma for lemma-L7.02a 944. [Auxiliary lemma - not displayed.]
 
Theoremlemma-L7.02a 944 Proper Substitution Over Implication Lemma.
𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
 
8.2.3.1  Recovered Axiom L4.
 
TheoremaxL4-P7 945 ax-L4 16 Derived from Natural Deduction Rules.
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
TheoremaxL4ex-P7 946 Existential Form of axL4-P7 945.
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
8.2.4  Existential Quantifier
 
Theoremalli-P7 947 Simplified '' Introduction Law.

For the original form, using explicit substitution, see ndalli-P7.17 842. The inference form is axGEN-P7 933.

𝑥𝛾    &   (𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremalloverimex-P7 948 Alternate version of alloverim-P7 970 that produces existential quantifiers.
(𝛾 → ∀𝑥(𝜑𝜓))       (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremalloverimex-P7.GENF 949 alloverimex-P7 948 with generalization augmentation (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremalloverimex-P7.GENF.RC 950 Inference Form of alloverimex-P7.GENF 949.
(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theoremexi-P7 951 Simplified '' Introduction Law.

For the original form, using explicit substitution, see ndalli-P7.17 842.

(𝛾𝜑)       (𝛾 → ∃𝑥𝜑)
 
Theoremexi-P7.CL 952 Closed Form of exi-P7 951.
(𝜑 → ∃𝑥𝜑)
 
Theoremexia-P7 953 Introduce Existential Quantifier as Antecedent.
𝑥𝛾    &   𝑥𝜓    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑𝜓))
 
Theoremexia-P7.RC 954 Inference Form of exia-P7 953.
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexe-P7 955 Simplified '' Elimination Law.

For the original form, using explicit substitution, see ndexe-P7.20 845.

𝑥𝛾    &   𝑥𝜓    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜓)
 
Theoremallnegex-P7-L1 956 Lemma for allnegex-P7 958. [Auxiliary lemma - not displayed.]
 
Theoremallnegex-P7-L2 957 Lemma for allnegex-P7 958. [Auxiliary lemma - not displayed.]
 
Theoremallnegex-P7 958 "For all not" is Equivalent to "Does not exist".

This statement is deducible with intuitionist logic. It's dual, given by exnegall-P7 1046, is not.

(∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
 
8.2.4.1  Recovered Existential Quantifier Definition.

In intuitionist logic, existential quantification is a stronger notion than in the classical case as we have '(∃𝑥𝜑 → ¬ ∀𝑥¬ 𝜑)', but not '(¬ ∀𝑥¬ 𝜑 → ∃𝑥𝜑)'. Also, unlike in the classical case, there is also no closed formula for existential quantification in terms of other the other primitive symbols.

 
Theoremdfexists-P7 959 df-exists-D5.1 596 Derived from Natural Deduction Rules.

Note that this definition is not deducible with intuitionist logic.

(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
 
Theoremdfexistsint-P7 960 Necessary Condition for (i.e. "If" part of) Existential Quantifier Definition.

Only this direction is deducible with intuitionist logic.

(∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑)
 
8.2.4.2  Recovered Axiom L6 (Original Form).

In intuitionist logic, the original form of Axiom L6, given here as axL6-P7 961, is weaker than the form involving existential quantification, deduced earlier as axL6ex-P7 925.

 
TheoremaxL6-P7 961* ax-L6 18 Derived From Natural Deduction Rules.

'𝑥' cannot occur in '𝑡'.

¬ ∀𝑥 ¬ 𝑥 = 𝑡
 
8.2.5  Effective Non-Freeness.
 
Theoremlemma-L7.03 962* Proper Substitution Applied To ENF Variable Lemma.

'𝑥' cannot occur in '𝑡'.

𝑥𝛾    &   (𝛾 → Ⅎ𝑥𝜑)       (𝛾 → ([𝑡 / 𝑥]𝜑𝜑))
 
Theoremgennfrcl-P7 963 General for ENF in (closed form).
(∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
 
Theoremdfnfreealtif-P7 964 Necessary Condition for (i.e. "If" part of) Alternate ENF Definition.
((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
 
Theoremnfrgencl-P7 965 ENF In General For (closed form).
(Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
 
Theoremdfnfreealtonlyif-P7 966 Sufficient Condition for (i.e. "Only If" part of) Alternate ENF Definition .
(Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
 
8.2.5.1  Recovered Alternate ENF Definition.
 
Theoremdfnfreealt-P7 967 dfnfreealt-P6 683 Derived from Natural Deduction Rules.
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
8.2.5.2  Recovered ENF Definition.

In intuitionist logic, we see that dfnfreealt-P6 683 is the closed formula for effective non-freeness, and the notion defined by dfnfree-P7 968 is too strong.

 
Theoremdfnfree-P7 968 df-nfree-D6.1 682 Derived From Natural Deduction Rules.

This definition is not valid with intuitionist logic.

(Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
 
Theoremdfnfreeint-P7 969 Necessary Condition for (i.e. "If" part of) df-nfree-D6.1 682 Derived From Natural Deduction Rules.

Only this direction is deducible with intuitionist logic.

((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)
 
8.2.6  Proper Substitution.
 
Theoremalloverim-P7 970 '' Distributes Over ''.
(𝛾 → ∀𝑥(𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P7.GENF 971 alloverim-P7 970 with generalization augmentation (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P7.GENF.RC 972 Inference Form of alloverim-P7.GENF 971.
(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremsuball-P7 973 Substitution Theorem for '𝑥' (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
 
Theoremsuball-P7.RC 974 Inference Form of suball-P7.RC 974.
(𝜑𝜓)       (∀𝑥𝜑 ↔ ∀𝑥𝜓)
 
Theoremqimeqallhalf-P7 975 Partial Quantified Implication Equivalence Law ( ( E U ) U ).

The reverse implication is also true if '𝑥' is ENF in either '𝜑' (see qimeqalla-P7 1050) or '𝜓' (see qimeqallb-P7r 1052).

((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremqimeqallb-P7 976 Quantified Implication Equivalence Law ( U ( E U ) ) (non-freeness condition b).
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
8.2.6.1  Recovered Simplified Proper Substitution Definition.
 
Theoremdfpsubv-P7 977* dfpsubv-P6 717, Derived from Natural Deduction Rules (restriction on '𝑡').

This form can be used whenever '𝑥' does not occur in '𝑡'.

([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
 
8.2.6.2  Recovered Full Proper Substitution Definition.
 
Theoremdfpsub-P7 978* df-psub-D6.2 716, Derived from Natural Deduction Rules.
([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
8.2.7  Scheme Completion Axioms.
 
8.2.7.1  Recovered Axiom L10.
 
TheoremaxL10-P7 979 ax-L10 27 Derived from Natural Deduction Rules.
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
8.2.7.2  Recovered Axiom L11.
 
TheoremaxL11-P7 980* ax-L11 28 Derived from Natural Deduction Rules.
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
TheoremaxL11ex-P7 981* Existential Form of axL11-P7 980.
(∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
 
8.2.7.3  Recovered Axiom L12.
 
TheoremaxL12-P7 982* ax-L12 29 Derived from Natural Deduction Rules.

'𝑥' cannot occur in '𝑡'.

(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
8.3  Revisiting Chapter 5.
 
8.3.1  Equivalence Properties of Equality Predicate.

Show that '=' is an equivalence relation. Reflexivity is given by ndeqi-P7.21 846.

 
Theoremeqsym-P7r 983 Equivalence Property: '=' Symmetry.

This is the restatement of a previously proven result. Do not use in proofs. Use eqsym-P7 936 instead.

(𝛾𝑡 = 𝑢)       (𝛾𝑢 = 𝑡)
 
Theoremeqsym-P7r.RC 984 Inference Form of eqsym-P7r 983.
𝑡 = 𝑢       𝑢 = 𝑡
 
Theoremeqsym-P7r.CL 985 Closed Form of eqsym-P7r 983.

This is the restatement of a previously proven result. Do not use in proofs. Use eqsym-P7 936 instead.

(𝑡 = 𝑢𝑢 = 𝑡)
 
Theoremeqsym-P7r.CL.SYM 986 Closed Symmetric Form of eqsym-P7r 983.

This is the restatement of a previously proven result. Do not use in proofs. Use eqsym-P7 936 instead.

(𝑡 = 𝑢𝑢 = 𝑡)
 
Theoremeqtrns-P7 987 Equivalence Property: '=' Transitivity.
(𝛾𝑡 = 𝑢)    &   (𝛾𝑢 = 𝑤)       (𝛾𝑡 = 𝑤)
 
Theoremeqtrns-P7.RC 988 Inference Form of eqtrns-P7 987.
𝑡 = 𝑢    &   𝑢 = 𝑤       𝑡 = 𝑤
 
Theoremeqtrns-P7.CL 989 Closed Form of eqtrns-P7 987.
((𝑡 = 𝑢𝑢 = 𝑤) → 𝑡 = 𝑤)
 
8.3.2  Simplified Quantifier Introduction / Elimination Rules.
 
Theoremalli-P7r 990 Simplified '' Introduction Law.

For the original form, using explicit substitution, see ndalli-P7.17 842. The inference form is axGEN-P7 933.

This is the restatement of a previously proven result. Do not use in proofs. Use alli-P7 947 instead.

𝑥𝛾    &   (𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremalli-P7r.VR 991* alli-P7r 990 with variable restriction.

'𝑥' cannot occur in '𝛾'.

(𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremalle-P7r 992 Simplified '' Elimination Law.

This is also known as the Specialization Law. For the original form, using explicit substitution, see ndalle-P7.18 843.

This is the restatement of a previously proven result. Do not use in proofs. Use alle-P7 941 instead.

(𝛾 → ∀𝑥𝜑)       (𝛾𝜑)
 
Theoremalle-P7r.RC 993 Inference Form of alle-P7r 992.
𝑥𝜑       𝜑
 
Theoremalle-P7r.CL 994 Closed Form of alle-P7r 992.

This is the restatement of a previously proven result. Do not use in proofs. Use alle-P7.CL 942 instead.

(∀𝑥𝜑𝜑)
 
Theoremexi-P7r 995 Simplified '' Introduction Law.

For the original form, using explicit substitution, see ndexi-P7.19 844.

This is the restatement of a previously proven result. Do not use in proofs. Use exi-P7 951 instead.

(𝛾𝜑)       (𝛾 → ∃𝑥𝜑)
 
Theoremexi-P7r.RC 996 Inference Form of exi-P7r 995.
𝜑       𝑥𝜑
 
Theoremexi-P7r.CL 997 Closed Form of exi-P7r 995.

This is the restatement of a previously proven result. Do not use in proofs. Use exi-P7.CL 952 instead.

(𝜑 → ∃𝑥𝜑)
 
Theoremexe-P7r 998 Simplified '' Elimination Law.

For the original form, using explicit substitution, see ndexe-P7.20 845 and ndexew-P7 867.

This is the restatement of a previously proven result. Do not use in proofs. Use exe-P7 955 instead.

𝑥𝛾    &   𝑥𝜓    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜓)
 
Theoremexe-P7r.VR1of2 999* exe-P7r 998 with one variable restriction.

'𝑥' cannot occur in '𝛾'.

𝑥𝜓    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜓)
 
Theoremexe-P7r.VR2of2 1000* exe-P7r 998 with one variable restriction.

'𝑥' cannot occur in '𝜓'.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >