| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L7.02a | |||
| Description: Proper Substitution Over Implication Lemma. † |
| Ref | Expression |
|---|---|
| lemma-L7.02a.1 | ⊢ Ⅎ𝑥𝛾 |
| lemma-L7.02a.2 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| lemma-L7.02a | ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndpsub4-P7.16 841 | . . . 4 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑) | |
| 2 | 1 | rcp-NDBIEF0 240 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜑) |
| 3 | 2 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)) |
| 4 | ndnfrv-P7.1 826 | . . 3 ⊢ Ⅎ𝑦𝛾 | |
| 5 | lemma-L7.02a.1 | . . . 4 ⊢ Ⅎ𝑥𝛾 | |
| 6 | lemma-L7.02a.2 | . . . 4 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 7 | 5, 6 | lemma-L7.02a-L1 943 | . . 3 ⊢ (𝛾 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 8 | 4, 7 | lemma-L7.02a-L1 943 | . 2 ⊢ (𝛾 → ([𝑡 / 𝑦][𝑦 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜓)) |
| 9 | ndpsub4-P7.16 841 | . . . 4 ⊢ ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜓) | |
| 10 | 9 | rcp-NDBIER0 241 | . . 3 ⊢ ([𝑡 / 𝑦][𝑦 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜓) |
| 11 | 10 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ([𝑡 / 𝑦][𝑦 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜓)) |
| 12 | 3, 8, 11 | dsyl-P3.25 261 | 1 ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 → wff-imp 10 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: axL4-P7 945 axL4ex-P7 946 |
| Copyright terms: Public domain | W3C validator |