PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L7.02a

Theorem lemma-L7.02a 944
Description: Proper Substitution Over Implication Lemma.
Hypotheses
Ref Expression
lemma-L7.02a.1 𝑥𝛾
lemma-L7.02a.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
lemma-L7.02a (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem lemma-L7.02a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ndpsub4-P7.16 841 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
21rcp-NDBIEF0 240 . . 3 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
32rcp-NDIMP0addall 207 . 2 (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜑))
4 ndnfrv-P7.1 826 . . 3 𝑦𝛾
5 lemma-L7.02a.1 . . . 4 𝑥𝛾
6 lemma-L7.02a.2 . . . 4 (𝛾 → (𝜑𝜓))
75, 6lemma-L7.02a-L1 943 . . 3 (𝛾 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
84, 7lemma-L7.02a-L1 943 . 2 (𝛾 → ([𝑡 / 𝑦][𝑦 / 𝑥]𝜑 → [𝑡 / 𝑦][𝑦 / 𝑥]𝜓))
9 ndpsub4-P7.16 841 . . . 4 ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜓)
109rcp-NDBIER0 241 . . 3 ([𝑡 / 𝑦][𝑦 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜓)
1110rcp-NDIMP0addall 207 . 2 (𝛾 → ([𝑡 / 𝑦][𝑦 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜓))
123, 8, 11dsyl-P3.25 261 1 (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  axL4-P7  945  axL4ex-P7  946
  Copyright terms: Public domain W3C validator