PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDBIER0

Theorem rcp-NDBIER0 241
Description: '' Elimination by Reverse Implication Introduction.
Hypothesis
Ref Expression
rcp-NDBIER0.1 (𝜑𝜓)
Assertion
Ref Expression
rcp-NDBIER0 (𝜓𝜑)

Proof of Theorem rcp-NDBIER0
StepHypRef Expression
1 rcp-NDBIER0.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32ndbier-P3.15 180 . 2 (⊤ → (𝜓𝜑))
43ndtruee-P3.18 183 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  idandthml-P4.23a  446  idandthmr-P4.23b  447  idornthml-P4.24a  448  idornthmr-P4.24b  449  oroverim-P4.28-L1  465  suballinf-P5  594  subexinf-P5  608  ndnfrneg-P7.2  827  lemma-L7.02a  944  dfexistsint-P7  960  cbvex-P7-L1  1065  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator