PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDBIEF0

Theorem rcp-NDBIEF0 240
Description: '' Elimination by Forward Implication Introduction.
Hypothesis
Ref Expression
rcp-NDBIEF0.1 (𝜑𝜓)
Assertion
Ref Expression
rcp-NDBIEF0 (𝜑𝜓)

Proof of Theorem rcp-NDBIEF0
StepHypRef Expression
1 rcp-NDBIEF0.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32ndbief-P3.14 179 . 2 (⊤ → (𝜑𝜓))
43ndtruee-P3.18 183 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  idandtruer-P4.19b  439  idorfalser-P4.20b  441  oroverim-P4.28-L1  465  oroverbiint-P4.28d  471  imoverand-P4.29a  472  imoveror-P4.29-L1  473  rimoverand-P4.31-L1  480  rimoveror-P4.31b  482  peirce2exclmid-P4.41b  513  suballinf-P5  594  subexinf-P5  608  specw-P5  661  lemma-L5.04a  667  exipsub-P6  720  nfrall2-P6  743  nfrex2-P6  744  nfrgencl-L6  811  exgennfrcl-L6  814  nfrimd-P6  815  nfrexgen-P7  931  lemma-L7.02a  944  dfnfreeint-P7  969  dfpsubv-P7  977  cbvall-P7-L1  1060  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator