| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDBIEF0 | |||
| Description: '↔' Elimination by Forward Implication Introduction. † |
| Ref | Expression |
|---|---|
| rcp-NDBIEF0.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| rcp-NDBIEF0 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDBIEF0.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ndbief-P3.14 179 | . 2 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 |
| This theorem is referenced by: idandtruer-P4.19b 439 idorfalser-P4.20b 441 oroverim-P4.28-L1 465 oroverbiint-P4.28d 471 imoverand-P4.29a 472 imoveror-P4.29-L1 473 rimoverand-P4.31-L1 480 rimoveror-P4.31b 482 peirce2exclmid-P4.41b 513 suballinf-P5 594 subexinf-P5 608 specw-P5 661 lemma-L5.04a 667 exipsub-P6 720 nfrall2-P6 743 nfrex2-P6 744 nfrgencl-L6 811 exgennfrcl-L6 814 nfrimd-P6 815 nfrexgen-P7 931 lemma-L7.02a 944 dfnfreeint-P7 969 dfpsubv-P7 977 cbvall-P7-L1 1060 nfrnegconv-P8 1110 |
| Copyright terms: Public domain | W3C validator |