PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrall2-P6

Theorem nfrall2-P6 743
Description: ENF Over Universal Quantifier (different variable).

See nfrall2w-P6 694 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
nfrall2-P6.1 𝑥𝜑
Assertion
Ref Expression
nfrall2-P6 𝑥𝑦𝜑
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfrall2-P6
StepHypRef Expression
1 nfrall2-P6.1 . . . . 5 𝑥𝜑
21nfrgen-P6 733 . . . 4 (𝜑 → ∀𝑥𝜑)
32alloverim-P5.RC.GEN 592 . . 3 (∀𝑦𝜑 → ∀𝑦𝑥𝜑)
4 allcomm-P6 739 . . . 4 (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑)
54rcp-NDBIEF0 240 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
63, 5syl-P3.24.RC 260 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
76gennfr-P6 734 1 𝑥𝑦𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  cbvall-P6-L1  750  psuball2v-P6-L1  795
  Copyright terms: Public domain W3C validator