PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvall-P6-L1

Theorem cbvall-P6-L1 750
Description: Lemma for cbvall-P6 751.
Hypotheses
Ref Expression
cbvall-P6-L1.1 𝑥𝜓
cbvall-P6-L1.2 𝑦𝜑
cbvall-P6-L1.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvall-P6-L1 (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvall-P6-L1
StepHypRef Expression
1 cbvall-P6-L1.2 . . 3 𝑦𝜑
21nfrall2-P6 743 . 2 𝑦𝑥𝜑
3 cbvall-P6-L1.1 . . 3 𝑥𝜓
4 cbvall-P6-L1.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4lemma-L6.04a 749 . 2 (∀𝑥𝜑𝜓)
62, 5allic-P6 745 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  cbvall-P6  751
  Copyright terms: Public domain W3C validator