PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvall-P6

Theorem cbvall-P6 751
Description: Change of Bound Variable Law for '𝑥' (non-freeness condition).
Hypotheses
Ref Expression
cbvall-P6.1 𝑥𝜓
cbvall-P6.2 𝑦𝜑
cbvall-P6.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvall-P6 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvall-P6
StepHypRef Expression
1 cbvall-P6.1 . . 3 𝑥𝜓
2 cbvall-P6.2 . . 3 𝑦𝜑
3 cbvall-P6.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43ndbief-P3.14 179 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbvall-P6-L1 750 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63ndbier-P3.15 180 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
7 eqsym-P5.CL.SYM 629 . . . 4 (𝑥 = 𝑦𝑦 = 𝑥)
86, 7subiml2-P4.RC 541 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
92, 1, 8cbvall-P6-L1 750 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
105, 9rcp-NDBII0 239 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  cbvex-P6  752  cbvallpsub-P6  768
  Copyright terms: Public domain W3C validator