PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml2-P4.RC

Theorem subiml2-P4.RC 541
Description: Inference Form of subiml2-P4 540.
Hypotheses
Ref Expression
subiml2-P4.RC.1 (𝜑𝜒)
subiml2-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
subiml2-P4.RC (𝜓𝜒)

Proof of Theorem subiml2-P4.RC
StepHypRef Expression
1 subiml2-P4.RC.1 . . . 4 (𝜑𝜒)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜒))
3 subiml2-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4subiml2-P4 540 . 2 (⊤ → (𝜓𝜒))
65ndtruee-P3.18 183 1 (𝜓𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  qimeqallhalf-P5  609  qimeqex-P5-L1  610  eqtrns-P5  630  subeqr-P5  635  subelofl-P5  638  subelofr-P5  640  exiisub-P5  655  cbvallv-P5  659  specw-P5  661  lemma-L5.04a  667  example-E5.04a  675  spec-P6  719  cbvall-P6  751  lemma-L6.07a-L2  771  psubim-P6-L1  789  psubim-P6-L2  790  psubnfrv-P7  927  psubinv-P7  939  lemma-L7.02a-L1  943  lemma-L7.03  962  cbvall-P7  1061  cbvex-P7  1066
  Copyright terms: Public domain W3C validator