| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subiml2-P4.RC | |||
| Description: Inference Form of subiml2-P4 540. † |
| Ref | Expression |
|---|---|
| subiml2-P4.RC.1 | ⊢ (𝜑 → 𝜒) |
| subiml2-P4.RC.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subiml2-P4.RC | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subiml2-P4.RC.1 | . . . 4 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → 𝜒)) |
| 3 | subiml2-P4.RC.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | subiml2-P4 540 | . 2 ⊢ (⊤ → (𝜓 → 𝜒)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: qimeqallhalf-P5 609 qimeqex-P5-L1 610 eqtrns-P5 630 subeqr-P5 635 subelofl-P5 638 subelofr-P5 640 exiisub-P5 655 cbvallv-P5 659 specw-P5 661 lemma-L5.04a 667 example-E5.04a 675 spec-P6 719 cbvall-P6 751 lemma-L6.07a-L2 771 psubim-P6-L1 789 psubim-P6-L2 790 psubnfrv-P7 927 psubinv-P7 939 lemma-L7.02a-L1 943 lemma-L7.03 962 cbvall-P7 1061 cbvex-P7 1066 |
| Copyright terms: Public domain | W3C validator |