PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml2-P4

Theorem subiml2-P4 540
Description: Alternate Form of subiml-P3.40a 325.
Hypotheses
Ref Expression
subiml2-P4.1 (𝛾 → (𝜑𝜒))
subiml2-P4.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subiml2-P4 (𝛾 → (𝜓𝜒))

Proof of Theorem subiml2-P4
StepHypRef Expression
1 subiml2-P4.1 . 2 (𝛾 → (𝜑𝜒))
2 subiml2-P4.2 . . . 4 (𝛾 → (𝜑𝜓))
32subiml-P3.40a 325 . . 3 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
43ndbief-P3.14 179 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
51, 4ndime-P3.6 171 1 (𝛾 → (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subiml2-P4.RC  541  joinimandres3-P4  582  joinimor3-P4  586
  Copyright terms: Public domain W3C validator