PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimor3-P4

Theorem joinimor3-P4 586
Description: Alternate form of joinimor-P4.8c 403.
Hypothesis
Ref Expression
joinimor3-P4.1 (𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))
Assertion
Ref Expression
joinimor3-P4 (𝛾 → (𝜑 → (𝜓𝜒)))

Proof of Theorem joinimor3-P4
StepHypRef Expression
1 joinimor3-P4.1 . . 3 (𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))
21joinimor-P4.8c 403 . 2 (𝛾 → ((𝜑𝜑) → (𝜓𝜒)))
3 idempotand-P4.25a 450 . . 3 ((𝜑𝜑) ↔ 𝜑)
43rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜑𝜑) ↔ 𝜑))
52, 4subiml2-P4 540 1 (𝛾 → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  joinimor3-P4.RC  587
  Copyright terms: Public domain W3C validator