| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idempotand-P4.25a | |||
| Description: Idempotency Law for '∧'. † |
| Ref | Expression |
|---|---|
| idempotand-P4.25a | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of2 193 | . 2 ⊢ ((𝜑 ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM1of1 192 | . . 3 ⊢ (𝜑 → 𝜑) | |
| 3 | 2, 2 | ndandi-P3.7 172 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜑)) |
| 4 | 1, 3 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: imoverand-P4.29a 472 imoveror-P4.29-L1 473 truthtblfandf-P4.37d 502 joinimandres3-P4 582 joinimor3-P4 586 |
| Copyright terms: Public domain | W3C validator |