PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idempotand-P4.25a

Theorem idempotand-P4.25a 450
Description: Idempotency Law for ''.
Assertion
Ref Expression
idempotand-P4.25a ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem idempotand-P4.25a
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 ((𝜑𝜑) → 𝜑)
2 rcp-NDASM1of1 192 . . 3 (𝜑𝜑)
32, 2ndandi-P3.7 172 . 2 (𝜑 → (𝜑𝜑))
41, 3rcp-NDBII0 239 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  imoverand-P4.29a  472  imoveror-P4.29-L1  473  truthtblfandf-P4.37d  502  joinimandres3-P4  582  joinimor3-P4  586
  Copyright terms: Public domain W3C validator