PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtblfandf-P4.37d

Theorem truthtblfandf-P4.37d 502
Description: ( F F ) F.
Assertion
Ref Expression
truthtblfandf-P4.37d ((⊥ ∧ ⊥) ↔ ⊥)

Proof of Theorem truthtblfandf-P4.37d
StepHypRef Expression
1 idempotand-P4.25a 450 1 ((⊥ ∧ ⊥) ↔ ⊥)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator