HomeHome bfol.mm Proof Explorer
Theorem List (p. 6 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 501-600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtruthtblfandt-P4.37c 501 ( F T ) F.
((⊥ ∧ ⊤) ↔ ⊥)
 
Theoremtruthtblfandf-P4.37d 502 ( F F ) F.
((⊥ ∧ ⊥) ↔ ⊥)
 
5.2.9.4  Disjunction.
 
Theoremtruthtbltort-P4.38a 503 ( T T ) T.
((⊤ ∨ ⊤) ↔ ⊤)
 
Theoremtruthtbltorf-P4.38b 504 ( T F ) T.
((⊤ ∨ ⊥) ↔ ⊤)
 
Theoremtruthtblfort-P4.38c 505 ( F T ) T.
((⊥ ∨ ⊤) ↔ ⊤)
 
Theoremtruthtblforf-P4.38d 506 ( F F ) F.
((⊥ ∨ ⊥) ↔ ⊥)
 
5.2.9.5  Equivalence.
 
Theoremtruthtbltbit-P4.39a 507 ( T T ) T.
((⊤ ↔ ⊤) ↔ ⊤)
 
Theoremtruthtbltbif-P4.39b 508 ( T F ) F.
((⊤ ↔ ⊥) ↔ ⊥)
 
Theoremtruthtblfbit-P4.39c 509 ( F T ) F.
((⊥ ↔ ⊤) ↔ ⊥)
 
Theoremtruthtblfbif-P4.39d 510 ( F F ) T.
((⊥ ↔ ⊥) ↔ ⊤)
 
5.3  Peirce's Law.
 
5.3.1  Classical Proof.
 
Theorempeirce-P4.40 511 Peirce's Law.

Cannot be proven without the Law of Excluded Middle.

(((𝜑𝜓) → 𝜑) → 𝜑)
 
5.3.2  Equivalence of Peirce's Law and Law of Excluded Middle.
 
Theoremexclmid2peirce-P4.41a 512 Peirce's Law from Law of Excluded Middle.

The use of ndexclmid-P3.16 181 is simply replaced with a hypothesis. All the other rules used are valid in intuitionist logic.

(𝜑 ∨ ¬ 𝜑)       (((𝜑𝜓) → 𝜑) → 𝜑)
 
Theorempeirce2exclmid-P4.41b 513 Law of Excluded Middle from Peirce's Law.

The hypothesis is a special case of Peirce's Law.

((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑))       (𝜑 ∨ ¬ 𝜑)
 
5.4  Appendix: Miscellaneous Utility Rules.
 
5.4.1  Reductio ad Absurdum.

This scheme relies on the Law of Excluded Middle.

 
5.4.1.1  Rule.
 
Theoremraa-P4 514 Reductio ad Absurdum.

This rule combines ndnegi-P3.3 168 with double negative elimination, and is thus dependent on the Law of Excluded Middle.

((𝛾 ∧ ¬ 𝜑) → 𝜓)    &   ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜓)       (𝛾𝜑)
 
5.4.1.2  Scheme.

These derived rules may be used in place of raa-P4 514.

 
Theoremrcp-RAA1 515 Reductio ad Absurdum.
𝛾₁𝜑)    &   𝛾₁ → ¬ 𝜑)       𝛾₁
 
Theoremrcp-RAA2 516 Reductio ad Absurdum.
((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑)    &   ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑)       (𝛾₁𝛾₂)
 
Theoremrcp-RAA3 517 Reductio ad Absurdum.
((𝛾₁𝛾₂ ∧ ¬ 𝛾₃) → 𝜑)    &   ((𝛾₁𝛾₂ ∧ ¬ 𝛾₃) → ¬ 𝜑)       ((𝛾₁𝛾₂) → 𝛾₃)
 
Theoremrcp-RAA4 518 Reductio ad Absurdum.
((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → 𝜑)    &   ((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → ¬ 𝜑)       ((𝛾₁𝛾₂𝛾₃) → 𝛾₄)
 
Theoremrcp-RAA5 519 Reductio ad Absurdum.
((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → 𝜑)    &   ((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → ¬ 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₅)
 
5.4.2  Reductio ad Absurdum Using "False" Constant.
 
5.4.2.1  Rule.
 
Theoremfalseraa-P4 520 Reductio ad Absurdum Using ''.

This rule combines falsenegi-P4.18 432 with double negative elimination, and is thus dependent on the Law of Excluded Middle.

((𝛾 ∧ ¬ 𝜑) → ⊥)       (𝛾𝜑)
 
5.4.2.2  Scheme.

These derived rules may be used in place of falseraa-P4 520.

 
Theoremrcp-FALSERAA1 521 Reductio ad Absurdum Using ''.
𝛾₁ → ⊥)       𝛾₁
 
Theoremrcp-FALSERAA2-P 522 Reductio ad Absurdum Using ''.
((𝛾₁ ∧ ¬ 𝛾₂) → ⊥)       (𝛾₁𝛾₂)
 
Theoremrcp-FALSERAA3 523 Reductio ad Absurdum Using ''.
((𝛾₁𝛾₂ ∧ ¬ 𝛾₃) → ⊥)       ((𝛾₁𝛾₂) → 𝛾₃)
 
Theoremrcp-FALSERAA4 524 Reductio ad Absurdum Using ''.
((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → ⊥)       ((𝛾₁𝛾₂𝛾₃) → 𝛾₄)
 
Theoremrcp-FALSERAA5 525 Reductio ad Absurdum Using ''.
((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → ⊥)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₅)
 
5.4.3  Convert Implication to Assumption.
 
5.4.3.1  Rule.
 
Theoremimpime-P4 526 '' Elimination with Importation.
(𝛾 → (𝜑𝜓))       ((𝛾𝜑) → 𝜓)
 
5.4.3.2  Scheme.

These derived rules may be used in place of impime-P4 526.

 
Theoremrcp-IMPIME1 527 '' Elimination with Importation.
(𝛾₁ → (𝜑𝜓))       ((𝛾₁𝜑) → 𝜓)
 
Theoremrcp-IMPIME2 528 '' Elimination with Importation.
((𝛾₁𝛾₂) → (𝜑𝜓))       ((𝛾₁𝛾₂𝜑) → 𝜓)
 
Theoremrcp-IMPIME3 529 '' Elimination with Importation.
((𝛾₁𝛾₂𝛾₃) → (𝜑𝜓))       ((𝛾₁𝛾₂𝛾₃𝜑) → 𝜓)
 
Theoremrcp-IMPIME4 530 '' Elimination with Importation.
((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝜑𝜓))       ((𝛾₁𝛾₂𝛾₃𝛾₄𝜑) → 𝜓)
 
5.4.4  Combine Biconditional Elimination with Modus Ponens.
 
Theorembimpf-P4 531 Modus Ponens with '' (forward).
(𝛾𝜑)    &   (𝛾 → (𝜑𝜓))       (𝛾𝜓)
 
Theorembimpf-P4.RC 532 Inference Form of bimpf-P4 531.
𝜑    &   (𝜑𝜓)       𝜓
 
Theorembimpr-P4 533 Modus Ponens with '' (reverse).
(𝛾𝜓)    &   (𝛾 → (𝜑𝜓))       (𝛾𝜑)
 
Theorembimpr-P4.RC 534 Inference Form of bimpr-P4 533.
𝜓    &   (𝜑𝜓)       𝜑
 
5.4.5  Transposition Laws as Equivalence Laws.
 
Theoremtrnspeq-P4a 535 Transposition Equivalence Law (trnsp-P3.31a 279).
((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
 
Theoremtrnspeq-P4b 536 Transposition Equivalence Law (trnsp-P3.31b 282).
((¬ 𝜑𝜓) ↔ (¬ 𝜓𝜑))
 
Theoremtrnspeq-P4c 537 Transposition Equivalence Law (trnsp-P3.31c 285 and trnsp-P3.31d 288).
((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
 
5.4.6  Different Form for Substitution Laws.
 
Theoremsubneg2-P4 538 Alternate Form of subneg-P3.39 323.
(𝛾 → ¬ 𝜑)    &   (𝛾 → (𝜑𝜓))       (𝛾 → ¬ 𝜓)
 
Theoremsubneg2-P4.RC 539 Inference Form of subneg2-P4 538.
¬ 𝜑    &   (𝜑𝜓)        ¬ 𝜓
 
Theoremsubiml2-P4 540 Alternate Form of subiml-P3.40a 325.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜒))
 
Theoremsubiml2-P4.RC 541 Inference Form of subiml2-P4 540.
(𝜑𝜒)    &   (𝜑𝜓)       (𝜓𝜒)
 
Theoremsubimr2-P4 542 Alternate Form of subimr-P3.40b 327.
(𝛾 → (𝜒𝜑))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜒𝜓))
 
Theoremsubimr2-P4.RC 543 Inference Form of subimr2-P4 542.
(𝜒𝜑)    &   (𝜑𝜓)       (𝜒𝜓)
 
Theoremsubimd2-P4 544 Alternate Form of subimd-P3.40c 329.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜓𝜗))
 
Theoremsubimd2-P4.RC 545 Inference Form of subimd2-P4 544.
(𝜑𝜒)    &   (𝜑𝜓)    &   (𝜒𝜗)       (𝜓𝜗)
 
Theoremsubbil2-P4 546 Alternate Form of subbil-P3.41a 332.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜒))
 
Theoremsubbil2-P4.RC 547 Inference Form of subbil2-P4 546.
(𝜑𝜒)    &   (𝜑𝜓)       (𝜓𝜒)
 
Theoremsubbir2-P4 548 Alternate Form of subbir-P3.41b 334.
(𝛾 → (𝜒𝜑))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜒𝜓))
 
Theoremsubbir2-P4.RC 549 Inference Form of subbir2-P4 548.
(𝜒𝜑)    &   (𝜑𝜓)       (𝜒𝜓)
 
Theoremsubbid2-P4 550 Alternate Form of subbid-P3.41c 336.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜓𝜗))
 
Theoremsubbid2-P4.RC 551 Inference Form of subbid2-P4 550.
(𝜑𝜒)    &   (𝜑𝜓)    &   (𝜒𝜗)       (𝜓𝜗)
 
Theoremsubandl2-P4 552 Alternate Form of subandl-P3.42a 339.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜒))
 
Theoremsubandl2-P4.RC 553 Inference Form of subandl2-P4 552.
(𝜑𝜒)    &   (𝜑𝜓)       (𝜓𝜒)
 
Theoremsubandr2-P4 554 Alternate Form of subandr-P3.42b 341.
(𝛾 → (𝜒𝜑))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜒𝜓))
 
Theoremsubandr2-P4.RC 555 Inference Form of subandr2-P4 554.
(𝜒𝜑)    &   (𝜑𝜓)       (𝜒𝜓)
 
Theoremsubandd2-P4 556 Alternate Form of subandd-P3.42c 343.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜓𝜗))
 
Theoremsubandd2-P4.RC 557 Inference Form of subandd2-P4 556.
(𝜑𝜒)    &   (𝜑𝜓)    &   (𝜒𝜗)       (𝜓𝜗)
 
Theoremsuborl2-P4 558 Alternate Form of suborl-P3.43a 346.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜒))
 
Theoremsuborl2-P4.RC 559 Inference Form of suborl2-P4 558.
(𝜑𝜒)    &   (𝜑𝜓)       (𝜓𝜒)
 
Theoremsuborr2-P4 560 Alternate Form of suborr-P3.43b 348.
(𝛾 → (𝜒𝜑))    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜒𝜓))
 
Theoremsuborr2-P4.RC 561 Inference Form of suborr2-P4 560.
(𝜒𝜑)    &   (𝜑𝜓)       (𝜒𝜓)
 
Theoremsubord2-P4 562 Alternate Form of subord-P3.43c 350.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜓𝜗))
 
Theoremsubord2-P4.RC 563 Inference Form of subord2-P4 562.
(𝜑𝜒)    &   (𝜑𝜓)    &   (𝜒𝜗)       (𝜓𝜗)
 
5.4.7  More Convenient Forms for Commutivity Laws.
 
Theoremandcomm2-P4 564 Alternate Form of andcomm-P3.35 314.
(𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜑))
 
Theoremandcomm2-P4.RC 565 Inference Form of andcomm2-P4 564.
(𝜑𝜓)       (𝜓𝜑)
 
Theoremorcomm2-P4 566 Alternate Form of orcomm-P3.37 319.
(𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜑))
 
Theoremorcomm2-P4.RC 567 Inference Form of orcomm2-P4 566.
(𝜑𝜓)       (𝜓𝜑)
 
5.4.8  More Convenient Forms for Associativity Laws.
 
Theoremandassoc2a-P4 568 Alternate Form A of andassoc-P3.36 317.
(𝛾 → ((𝜑𝜓) ∧ 𝜒))       (𝛾 → (𝜑 ∧ (𝜓𝜒)))
 
Theoremandassoc2a-P4.RC 569 Inference Form of andassoc2a-P4 568.
((𝜑𝜓) ∧ 𝜒)       (𝜑 ∧ (𝜓𝜒))
 
Theoremandassoc2b-P4 570 Alternate Form B of andassoc-P3.36 317.
(𝛾 → (𝜑 ∧ (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) ∧ 𝜒))
 
Theoremandassoc2b-P4.RC 571 Inference Form of andassoc2b-P4 570.
(𝜑 ∧ (𝜓𝜒))       ((𝜑𝜓) ∧ 𝜒)
 
Theoremorassoc2a-P4 572 Alternate Form A of orassoc-P3.38 322.
(𝛾 → ((𝜑𝜓) ∨ 𝜒))       (𝛾 → (𝜑 ∨ (𝜓𝜒)))
 
Theoremorassoc2a-P4.RC 573 Inference Form of orassoc2a-P4 572.
((𝜑𝜓) ∨ 𝜒)       (𝜑 ∨ (𝜓𝜒))
 
Theoremorassoc2b-P4 574 Alternate Form B of orassoc-P3.38 322.
(𝛾 → (𝜑 ∨ (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) ∨ 𝜒))
 
Theoremorassoc2b-P4.RC 575 Inference Form of orassoc2b-P4 574.
(𝜑 ∨ (𝜓𝜒))       ((𝜑𝜓) ∨ 𝜒)
 
5.4.9  More Convenient Forms for Joining Implications.
 
Theoremjoinimandinc2-P4 576 Alternate form of joinimandinc-P4.8a 397.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimandinc2-P4.RC 577 Inference Form of joinimandinc2-P4 576.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) → (𝜓𝜗))
 
Theoremjoinimandinc3-P4 578 Alternate form of joinimandinc-P4.8a 397.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜓))       (𝛾 → ((𝜑𝜒) → 𝜓))
 
Theoremjoinimandinc3-P4.RC 579 Inference Form of joinimandinc3-P4 578.
(𝜑𝜓)    &   (𝜒𝜓)       ((𝜑𝜒) → 𝜓)
 
Theoremjoinimandres2-P4 580 Alternate form of joinimandres-P4.8b 400.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimandres2-P4.RC 581 Inference Form of joinimandres2-P4 580.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) → (𝜓𝜗))
 
Theoremjoinimandres3-P4 582 Alternate form of joinimandres-P4.8b 400.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜑𝜒))       (𝛾 → (𝜑 → (𝜓𝜒)))
 
Theoremjoinimandres3-P4.RC 583 Inference Form of joinimandres3-P4 582.
(𝜑𝜓)    &   (𝜑𝜒)       (𝜑 → (𝜓𝜒))
 
Theoremjoinimor2-P4 584 Alternate form of joinimor-P4.8c 403.
(𝛾 → ((𝜑𝜓) ∨ (𝜒𝜓)))       (𝛾 → ((𝜑𝜒) → 𝜓))
 
Theoremjoinimor2-P4.RC 585 Inference Form of joinimor2-P4 584.
((𝜑𝜓) ∨ (𝜒𝜓))       ((𝜑𝜒) → 𝜓)
 
Theoremjoinimor3-P4 586 Alternate form of joinimor-P4.8c 403.
(𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))       (𝛾 → (𝜑 → (𝜓𝜒)))
 
Theoremjoinimor3-P4.RC 587 Inference Form of joinimor3-P4 586.
((𝜑𝜓) ∨ (𝜑𝜒))       (𝜑 → (𝜓𝜒))
 
PART 6  Chapter 5: Predicate Calculus (FOL Axioms)
 
6.1  Consequences of ax-GEN and ax-L4.
 
6.1.1  The Universal Quantifier.
 
Theoremalloverim-P5 588 '𝑥' Distributes Over ''.

This is the deductive form of ax-L4 16.

(𝛾 → ∀𝑥(𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P5.RC 589 Inference Form of alloverim-P5 588.
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremdalloverim-P5 590 Double '𝑥' Distribution Over ''.
(𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremdalloverim-P5.RC 591 Inference Form of dalloverim-P5 590.
𝑥(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
6.1.1.1  Generalization Augmentation.
 
Theoremalloverim-P5.RC.GEN 592 Inference Form of alloverim-P5 588 with Generalization.

For the deductive form with a variable restriction see alloverim-P5.GENV 621. For the most general form, see alloverim-P5.GENF 747.

(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremdalloverim-P5.RC.GEN 593 Inference Form of dalloverim-P5 590 with generalization.
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
6.1.1.2  A Substitution Law for Universal Quantification.
 
Theoremsuballinf-P5 594 Inference Version of '𝑥' Substitution Law.

For the deductive form with a variable restriction, see suballv-P5 623. For the most general form, see suball-P6 753.

(𝜑𝜓)       (∀𝑥𝜑 ↔ ∀𝑥𝜓)
 
6.1.2  The Existential Quantifier.
 
6.1.2.1  Syntax Definition.
 
Syntaxwff-exists 595 Extend WFF definition to include the existential quantifier ''.
wff 𝑥𝜑
 
6.1.2.2  Formal Definition.
 
Definitiondf-exists-D5.1 596 Definition of Existential Quantifier, ''. Read as "there exists".
(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
 
6.1.3  Dual Properties of Universal / Existential Quantification.
 
Theoremallnegex-P5 597 "For all not" is Equivalent to "Does not exist".

Dual of exnegall-P5 598.

(∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremexnegall-P5 598 "Exists a negative" is Equivalent to "Not for all".

Dual of allnegex-P5 597.

(∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
 
Theoremallasex-P5 599 Universal Quantification in Terms of Existential Quantification.

Dual of df-exists-D5.1 596.

(∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
 
Theoremlemma-L5.01a 600 Transpositional Quantifier Equivalence Lemma.
((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >