| bfol.mm
Proof Explorer Theorem List (p. 6 of 12) |
< Previous Next >
|
|
Mirrors > Metamath Home Page > PE Home Page > Theorem List Contents This page: Page List | |||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | truthtblfandt-P4.37c 501 | ( F ∧ T ) ⇔ F. † |
| ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | ||
| Theorem | truthtblfandf-P4.37d 502 | ( F ∧ F ) ⇔ F. † |
| ⊢ ((⊥ ∧ ⊥) ↔ ⊥) | ||
| Theorem | truthtbltort-P4.38a 503 | ( T ∨ T ) ⇔ T. † |
| ⊢ ((⊤ ∨ ⊤) ↔ ⊤) | ||
| Theorem | truthtbltorf-P4.38b 504 | ( T ∨ F ) ⇔ T. † |
| ⊢ ((⊤ ∨ ⊥) ↔ ⊤) | ||
| Theorem | truthtblfort-P4.38c 505 | ( F ∨ T ) ⇔ T. † |
| ⊢ ((⊥ ∨ ⊤) ↔ ⊤) | ||
| Theorem | truthtblforf-P4.38d 506 | ( F ∨ F ) ⇔ F. † |
| ⊢ ((⊥ ∨ ⊥) ↔ ⊥) | ||
| Theorem | truthtbltbit-P4.39a 507 | ( T ↔ T ) ⇔ T. † |
| ⊢ ((⊤ ↔ ⊤) ↔ ⊤) | ||
| Theorem | truthtbltbif-P4.39b 508 | ( T ↔ F ) ⇔ F. † |
| ⊢ ((⊤ ↔ ⊥) ↔ ⊥) | ||
| Theorem | truthtblfbit-P4.39c 509 | ( F ↔ T ) ⇔ F. † |
| ⊢ ((⊥ ↔ ⊤) ↔ ⊥) | ||
| Theorem | truthtblfbif-P4.39d 510 | ( F ↔ F ) ⇔ T. † |
| ⊢ ((⊥ ↔ ⊥) ↔ ⊤) | ||
| Theorem | peirce-P4.40 511 |
Peirce's Law.
Cannot be proven without the Law of Excluded Middle. |
| ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | ||
| Theorem | exclmid2peirce-P4.41a 512 |
Peirce's Law from Law of Excluded Middle. †
The use of ndexclmid-P3.16 181 is simply replaced with a hypothesis. All the other rules used are valid in intuitionist logic.
|
| ⊢ (𝜑 ∨ ¬ 𝜑) ⇒ ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | ||
| Theorem | peirce2exclmid-P4.41b 513 |
Law of Excluded Middle from Peirce's Law. †
The hypothesis is a special case of Peirce's Law. |
| ⊢ ((((𝜑 ∨ ¬ 𝜑) → ⊥) → (𝜑 ∨ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
This scheme relies on the Law of Excluded Middle. | ||
| Theorem | raa-P4 514 |
Reductio ad Absurdum.
This rule combines ndnegi-P3.3 168 with double negative elimination, and is thus dependent on the Law of Excluded Middle. |
| ⊢ ((𝛾 ∧ ¬ 𝜑) → 𝜓) & ⊢ ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜓) ⇒ ⊢ (𝛾 → 𝜑) | ||
These derived rules may be used in place of raa-P4 514. | ||
| Theorem | rcp-RAA1 515 | Reductio ad Absurdum. |
| ⊢ (¬ 𝛾₁ → 𝜑) & ⊢ (¬ 𝛾₁ → ¬ 𝜑) ⇒ ⊢ 𝛾₁ | ||
| Theorem | rcp-RAA2 516 | Reductio ad Absurdum. |
| ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑) & ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑) ⇒ ⊢ (𝛾₁ → 𝛾₂) | ||
| Theorem | rcp-RAA3 517 | Reductio ad Absurdum. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ ¬ 𝛾₃) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ ¬ 𝛾₃) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝛾₃) | ||
| Theorem | rcp-RAA4 518 | Reductio ad Absurdum. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ ¬ 𝛾₄) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ ¬ 𝛾₄) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₄) | ||
| Theorem | rcp-RAA5 519 | Reductio ad Absurdum. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ ¬ 𝛾₅) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ ¬ 𝛾₅) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₅) | ||
| Theorem | falseraa-P4 520 |
Reductio ad Absurdum Using '⊥'.
This rule combines falsenegi-P4.18 432 with double negative elimination, and is thus dependent on the Law of Excluded Middle. |
| ⊢ ((𝛾 ∧ ¬ 𝜑) → ⊥) ⇒ ⊢ (𝛾 → 𝜑) | ||
These derived rules may be used in place of falseraa-P4 520. | ||
| Theorem | rcp-FALSERAA1 521 | Reductio ad Absurdum Using '⊥'. |
| ⊢ (¬ 𝛾₁ → ⊥) ⇒ ⊢ 𝛾₁ | ||
| Theorem | rcp-FALSERAA2-P 522 | Reductio ad Absurdum Using '⊥'. |
| ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → ⊥) ⇒ ⊢ (𝛾₁ → 𝛾₂) | ||
| Theorem | rcp-FALSERAA3 523 | Reductio ad Absurdum Using '⊥'. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ ¬ 𝛾₃) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝛾₃) | ||
| Theorem | rcp-FALSERAA4 524 | Reductio ad Absurdum Using '⊥'. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ ¬ 𝛾₄) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₄) | ||
| Theorem | rcp-FALSERAA5 525 | Reductio ad Absurdum Using '⊥'. |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ ¬ 𝛾₅) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₅) | ||
| Theorem | impime-P4 526 | '→' Elimination with Importation. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) ⇒ ⊢ ((𝛾 ∧ 𝜑) → 𝜓) | ||
These derived rules may be used in place of impime-P4 526. | ||
| Theorem | rcp-IMPIME1 527 | '→' Elimination with Importation. † |
| ⊢ (𝛾₁ → (𝜑 → 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝜑) → 𝜓) | ||
| Theorem | rcp-IMPIME2 528 | '→' Elimination with Importation. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → (𝜑 → 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜑) → 𝜓) | ||
| Theorem | rcp-IMPIME3 529 | '→' Elimination with Importation. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → (𝜑 → 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝜑) → 𝜓) | ||
| Theorem | rcp-IMPIME4 530 | '→' Elimination with Importation. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → (𝜑 → 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝜑) → 𝜓) | ||
| Theorem | bimpf-P4 531 | Modus Ponens with '↔' (forward). † |
| ⊢ (𝛾 → 𝜑) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → 𝜓) | ||
| Theorem | bimpf-P4.RC 532 | Inference Form of bimpf-P4 531. † |
| ⊢ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | bimpr-P4 533 | Modus Ponens with '↔' (reverse). † |
| ⊢ (𝛾 → 𝜓) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | bimpr-P4.RC 534 | Inference Form of bimpr-P4 533. † |
| ⊢ 𝜓 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ 𝜑 | ||
| Theorem | trnspeq-P4a 535 | Transposition Equivalence Law (trnsp-P3.31a 279). † |
| ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) | ||
| Theorem | trnspeq-P4b 536 | Transposition Equivalence Law (trnsp-P3.31b 282). |
| ⊢ ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑)) | ||
| Theorem | trnspeq-P4c 537 | Transposition Equivalence Law (trnsp-P3.31c 285 and trnsp-P3.31d 288). |
| ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | ||
| Theorem | subneg2-P4 538 | Alternate Form of subneg-P3.39 323. † |
| ⊢ (𝛾 → ¬ 𝜑) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ¬ 𝜓) | ||
| Theorem | subneg2-P4.RC 539 | Inference Form of subneg2-P4 538. † |
| ⊢ ¬ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ 𝜓 | ||
| Theorem | subiml2-P4 540 | Alternate Form of subiml-P3.40a 325. † |
| ⊢ (𝛾 → (𝜑 → 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 → 𝜒)) | ||
| Theorem | subiml2-P4.RC 541 | Inference Form of subiml2-P4 540. † |
| ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 → 𝜒) | ||
| Theorem | subimr2-P4 542 | Alternate Form of subimr-P3.40b 327. † |
| ⊢ (𝛾 → (𝜒 → 𝜑)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜒 → 𝜓)) | ||
| Theorem | subimr2-P4.RC 543 | Inference Form of subimr2-P4 542. † |
| ⊢ (𝜒 → 𝜑) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 → 𝜓) | ||
| Theorem | subimd2-P4 544 | Alternate Form of subimd-P3.40c 329. † |
| ⊢ (𝛾 → (𝜑 → 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → (𝜓 → 𝜗)) | ||
| Theorem | subimd2-P4.RC 545 | Inference Form of subimd2-P4 544. † |
| ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ (𝜓 → 𝜗) | ||
| Theorem | subbil2-P4 546 | Alternate Form of subbil-P3.41a 332. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ↔ 𝜒)) | ||
| Theorem | subbil2-P4.RC 547 | Inference Form of subbil2-P4 546. † |
| ⊢ (𝜑 ↔ 𝜒) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 ↔ 𝜒) | ||
| Theorem | subbir2-P4 548 | Alternate Form of subbir-P3.41b 334. † |
| ⊢ (𝛾 → (𝜒 ↔ 𝜑)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜒 ↔ 𝜓)) | ||
| Theorem | subbir2-P4.RC 549 | Inference Form of subbir2-P4 548. † |
| ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜓) | ||
| Theorem | subbid2-P4 550 | Alternate Form of subbid-P3.41c 336. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → (𝜓 ↔ 𝜗)) | ||
| Theorem | subbid2-P4.RC 551 | Inference Form of subbid2-P4 550. † |
| ⊢ (𝜑 ↔ 𝜒) & ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ (𝜓 ↔ 𝜗) | ||
| Theorem | subandl2-P4 552 | Alternate Form of subandl-P3.42a 339. † |
| ⊢ (𝛾 → (𝜑 ∧ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ∧ 𝜒)) | ||
| Theorem | subandl2-P4.RC 553 | Inference Form of subandl2-P4 552. † |
| ⊢ (𝜑 ∧ 𝜒) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 ∧ 𝜒) | ||
| Theorem | subandr2-P4 554 | Alternate Form of subandr-P3.42b 341. † |
| ⊢ (𝛾 → (𝜒 ∧ 𝜑)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜒 ∧ 𝜓)) | ||
| Theorem | subandr2-P4.RC 555 | Inference Form of subandr2-P4 554. † |
| ⊢ (𝜒 ∧ 𝜑) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ∧ 𝜓) | ||
| Theorem | subandd2-P4 556 | Alternate Form of subandd-P3.42c 343. † |
| ⊢ (𝛾 → (𝜑 ∧ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → (𝜓 ∧ 𝜗)) | ||
| Theorem | subandd2-P4.RC 557 | Inference Form of subandd2-P4 556. † |
| ⊢ (𝜑 ∧ 𝜒) & ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ (𝜓 ∧ 𝜗) | ||
| Theorem | suborl2-P4 558 | Alternate Form of suborl-P3.43a 346. † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ∨ 𝜒)) | ||
| Theorem | suborl2-P4.RC 559 | Inference Form of suborl2-P4 558. † |
| ⊢ (𝜑 ∨ 𝜒) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 ∨ 𝜒) | ||
| Theorem | suborr2-P4 560 | Alternate Form of suborr-P3.43b 348. † |
| ⊢ (𝛾 → (𝜒 ∨ 𝜑)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜒 ∨ 𝜓)) | ||
| Theorem | suborr2-P4.RC 561 | Inference Form of suborr2-P4 560. † |
| ⊢ (𝜒 ∨ 𝜑) & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ∨ 𝜓) | ||
| Theorem | subord2-P4 562 | Alternate Form of subord-P3.43c 350. † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜒)) & ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → (𝜓 ∨ 𝜗)) | ||
| Theorem | subord2-P4.RC 563 | Inference Form of subord2-P4 562. † |
| ⊢ (𝜑 ∨ 𝜒) & ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ (𝜓 ∨ 𝜗) | ||
| Theorem | andcomm2-P4 564 | Alternate Form of andcomm-P3.35 314. † |
| ⊢ (𝛾 → (𝜑 ∧ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ∧ 𝜑)) | ||
| Theorem | andcomm2-P4.RC 565 | Inference Form of andcomm2-P4 564. † |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜓 ∧ 𝜑) | ||
| Theorem | orcomm2-P4 566 | Alternate Form of orcomm-P3.37 319. † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ∨ 𝜑)) | ||
| Theorem | orcomm2-P4.RC 567 | Inference Form of orcomm2-P4 566. † |
| ⊢ (𝜑 ∨ 𝜓) ⇒ ⊢ (𝜓 ∨ 𝜑) | ||
| Theorem | andassoc2a-P4 568 | Alternate Form A of andassoc-P3.36 317. † |
| ⊢ (𝛾 → ((𝜑 ∧ 𝜓) ∧ 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 ∧ (𝜓 ∧ 𝜒))) | ||
| Theorem | andassoc2a-P4.RC 569 | Inference Form of andassoc2a-P4 568. † |
| ⊢ ((𝜑 ∧ 𝜓) ∧ 𝜒) ⇒ ⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) | ||
| Theorem | andassoc2b-P4 570 | Alternate Form B of andassoc-P3.36 317. † |
| ⊢ (𝛾 → (𝜑 ∧ (𝜓 ∧ 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | ||
| Theorem | andassoc2b-P4.RC 571 | Inference Form of andassoc2b-P4 570. † |
| ⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) ∧ 𝜒) | ||
| Theorem | orassoc2a-P4 572 | Alternate Form A of orassoc-P3.38 322. † |
| ⊢ (𝛾 → ((𝜑 ∨ 𝜓) ∨ 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | ||
| Theorem | orassoc2a-P4.RC 573 | Inference Form of orassoc2a-P4 572. † |
| ⊢ ((𝜑 ∨ 𝜓) ∨ 𝜒) ⇒ ⊢ (𝜑 ∨ (𝜓 ∨ 𝜒)) | ||
| Theorem | orassoc2b-P4 574 | Alternate Form B of orassoc-P3.38 322. † |
| ⊢ (𝛾 → (𝜑 ∨ (𝜓 ∨ 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
| Theorem | orassoc2b-P4.RC 575 | Inference Form of orassoc2b-P4 574. † |
| ⊢ (𝜑 ∨ (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∨ 𝜓) ∨ 𝜒) | ||
| Theorem | joinimandinc2-P4 576 | Alternate form of joinimandinc-P4.8a 397. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜒 → 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜗))) | ||
| Theorem | joinimandinc2-P4.RC 577 | Inference Form of joinimandinc2-P4 576. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜗) ⇒ ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜗)) | ||
| Theorem | joinimandinc3-P4 578 | Alternate form of joinimandinc-P4.8a 397. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜒 → 𝜓)) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜒) → 𝜓)) | ||
| Theorem | joinimandinc3-P4.RC 579 | Inference Form of joinimandinc3-P4 578. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒) → 𝜓) | ||
| Theorem | joinimandres2-P4 580 | Alternate form of joinimandres-P4.8b 400. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜒 → 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜗))) | ||
| Theorem | joinimandres2-P4.RC 581 | Inference Form of joinimandres2-P4 580. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜗) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜗)) | ||
| Theorem | joinimandres3-P4 582 | Alternate form of joinimandres-P4.8b 400. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜑 → 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 → (𝜓 ∧ 𝜒))) | ||
| Theorem | joinimandres3-P4.RC 583 | Inference Form of joinimandres3-P4 582. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | ||
| Theorem | joinimor2-P4 584 | Alternate form of joinimor-P4.8c 403. † |
| ⊢ (𝛾 → ((𝜑 → 𝜓) ∨ (𝜒 → 𝜓))) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) → 𝜓)) | ||
| Theorem | joinimor2-P4.RC 585 | Inference Form of joinimor2-P4 584. † |
| ⊢ ((𝜑 → 𝜓) ∨ (𝜒 → 𝜓)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | ||
| Theorem | joinimor3-P4 586 | Alternate form of joinimor-P4.8c 403. † |
| ⊢ (𝛾 → ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒))) ⇒ ⊢ (𝛾 → (𝜑 → (𝜓 ∨ 𝜒))) | ||
| Theorem | joinimor3-P4.RC 587 | Inference Form of joinimor3-P4 586. † |
| ⊢ ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | ||
| Theorem | alloverim-P5 588 |
'∀𝑥'
Distributes Over '→'.
This is the deductive form of ax-L4 16. |
| ⊢ (𝛾 → ∀𝑥(𝜑 → 𝜓)) ⇒ ⊢ (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | alloverim-P5.RC 589 | Inference Form of alloverim-P5 588. |
| ⊢ ∀𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | dalloverim-P5 590 | Double '∀𝑥' Distribution Over '→'. |
| ⊢ (𝛾 → ∀𝑥(𝜑 → (𝜓 → 𝜒))) ⇒ ⊢ (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | ||
| Theorem | dalloverim-P5.RC 591 | Inference Form of dalloverim-P5 590. |
| ⊢ ∀𝑥(𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
| Theorem | alloverim-P5.RC.GEN 592 |
Inference Form of alloverim-P5 588 with Generalization.
For the deductive form with a variable restriction see alloverim-P5.GENV 621. For the most general form, see alloverim-P5.GENF 747. |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | dalloverim-P5.RC.GEN 593 | Inference Form of dalloverim-P5 590 with generalization. |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
| Theorem | suballinf-P5 594 |
Inference Version of '∀𝑥' Substitution Law.
For the deductive form with a variable restriction, see suballv-P5 623. For the most general form, see suball-P6 753. |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) | ||
| Syntax | wff-exists 595 | Extend WFF definition to include the existential quantifier '∃'. |
| wff ∃𝑥𝜑 | ||
| Definition | df-exists-D5.1 596 | Definition of Existential Quantifier, '∃'. Read as "there exists". |
| ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | ||
| Theorem | allnegex-P5 597 |
"For all not" is Equivalent to "Does not exist".
Dual of exnegall-P5 598. |
| ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | ||
| Theorem | exnegall-P5 598 |
"Exists a negative" is Equivalent to "Not for all".
Dual of allnegex-P5 597. |
| ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | ||
| Theorem | allasex-P5 599 |
Universal Quantification in Terms of Existential Quantification.
Dual of df-exists-D5.1 596. |
| ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | ||
| Theorem | lemma-L5.01a 600 | Transpositional Quantifier Equivalence Lemma. |
| ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |