PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimandinc2-P4

Theorem joinimandinc2-P4 576
Description: Alternate form of joinimandinc-P4.8a 397.
Hypotheses
Ref Expression
joinimandinc2-P4.1 (𝛾 → (𝜑𝜓))
joinimandinc2-P4.2 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
joinimandinc2-P4 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))

Proof of Theorem joinimandinc2-P4
StepHypRef Expression
1 joinimandinc2-P4.1 . . 3 (𝛾 → (𝜑𝜓))
2 joinimandinc2-P4.2 . . 3 (𝛾 → (𝜒𝜗))
31, 2ndandi-P3.7 172 . 2 (𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))
43joinimandinc-P4.8a 397 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND3 161
This theorem is referenced by:  joinimandinc2-P4.RC  577
  Copyright terms: Public domain W3C validator