| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndandi-P3.7 | |||
| Description: Natural Deduction: '∧' Introduction Rule.
Deduce the conjunction of two previously deduced WFFs. |
| Ref | Expression |
|---|---|
| ndandi-P3.7.1 | ⊢ (𝛾 → 𝜑) |
| ndandi-P3.7.2 | ⊢ (𝛾 → 𝜓) |
| Ref | Expression |
|---|---|
| ndandi-P3.7 | ⊢ (𝛾 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndandi-P3.7.1 | . 2 ⊢ (𝛾 → 𝜑) | |
| 2 | ndandi-P3.7.2 | . 2 ⊢ (𝛾 → 𝜓) | |
| 3 | 1, 2 | cmb-P2.9c.AC.2SH 139 | 1 ⊢ (𝛾 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: rcp-NDANDI0 229 export-P3.34b 307 andcomm-P3.35-L1 313 andassoc-P3.36-L1 315 andassoc-P3.36-L2 316 subandl-P3.42a-L1 338 andasim-P3.46-L2 355 dfbi-P3.47 358 nprofeliml-P4.6a 389 nprofelimr-P4.6b 391 joinimandres-P4.8b 400 sepimandr-P4.9a 406 sepimorl-P4.9b 409 idandtruel-P4.19a 438 idempotand-P4.25a 450 dmorgafwd-L4.1 452 dmorgbfwd-L4.3 454 andoveror-P4.27-L1 459 andoveror-P4.27-L2 460 oroverand-P4.27-L3 462 oroverand-P4.27-L4 463 joinimandinc2-P4 576 joinimandinc3-P4 578 joinimandres2-P4 580 joinimandres3-P4 582 eqmiddle-P6 708 lemma-L6.07a-L2 771 spliteq-P6-L1 775 splitelof-P6-L1 777 |
| Copyright terms: Public domain | W3C validator |