| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > andassoc-P3.36-L1 | |||
| Description: Lemma for andassoc-P3.36 317. † |
| Ref | Expression |
|---|---|
| andassoc-P3.36-L1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | ndander-P3.9 174 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
| 3 | 2 | ndander-P3.9 174 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) |
| 4 | 2 | ndandel-P3.8 173 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) |
| 5 | 1 | ndandel-P3.8 173 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜒) |
| 6 | 4, 5 | ndandi-P3.7 172 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 7 | 3, 6 | ndandi-P3.7 172 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: andassoc-P3.36 317 |
| Copyright terms: Public domain | W3C validator |