PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andassoc-P3.36-L1

Theorem andassoc-P3.36-L1 315
Description: Lemma for andassoc-P3.36 317.
Assertion
Ref Expression
andassoc-P3.36-L1 (((𝜑𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓𝜒)))

Proof of Theorem andassoc-P3.36-L1
StepHypRef Expression
1 rcp-NDASM1of1 192 . . . 4 (((𝜑𝜓) ∧ 𝜒) → ((𝜑𝜓) ∧ 𝜒))
21ndander-P3.9 174 . . 3 (((𝜑𝜓) ∧ 𝜒) → (𝜑𝜓))
32ndander-P3.9 174 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜑)
42ndandel-P3.8 173 . . 3 (((𝜑𝜓) ∧ 𝜒) → 𝜓)
51ndandel-P3.8 173 . . 3 (((𝜑𝜓) ∧ 𝜒) → 𝜒)
64, 5ndandi-P3.7 172 . 2 (((𝜑𝜓) ∧ 𝜒) → (𝜓𝜒))
73, 6ndandi-P3.7 172 1 (((𝜑𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andassoc-P3.36  317
  Copyright terms: Public domain W3C validator