| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndandel-P3.8 | |||
| Description: Natural Deduction: Left
'∧' Elimination Rule.
Deduce the right conjunct (i.e. eliminate the left conjunct) of a previously deduced conjunction. |
| Ref | Expression |
|---|---|
| ndandel-P3.8.1 | ⊢ (𝛾 → (𝜑 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| ndandel-P3.8 | ⊢ (𝛾 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndandel-P3.8.1 | . 2 ⊢ (𝛾 → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | simpr-P2.9b.AC.SH 137 | 1 ⊢ (𝛾 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: rcp-NDANDEL0 230 import-P3.34a 305 andcomm-P3.35-L1 313 andassoc-P3.36-L1 315 andassoc-P3.36-L2 316 subandl-P3.42a-L1 338 andasim-P3.46-L1 354 nandil-P4.3a 373 joinimandinc-P4.8a 397 joinimandres-P4.8b 400 joinimor-P4.8c 403 sepimandr-P4.9a 406 dmorgarev-L4.2 453 andoveror-P4.27-L2 460 oroverand-P4.27-L3 462 oroverbiint-P4.28d 471 imasandint-P4.33b 490 biasandorint-P4.34b 492 |
| Copyright terms: Public domain | W3C validator |