PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndandel-P3.8

Theorem ndandel-P3.8 173
Description: Natural Deduction: Left '' Elimination Rule.

Deduce the right conjunct (i.e. eliminate the left conjunct) of a previously deduced conjunction.

Hypothesis
Ref Expression
ndandel-P3.8.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
ndandel-P3.8 (𝛾𝜓)

Proof of Theorem ndandel-P3.8
StepHypRef Expression
1 ndandel-P3.8.1 . 2 (𝛾 → (𝜑𝜓))
21simpr-P2.9b.AC.SH 137 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rcp-NDANDEL0  230  import-P3.34a  305  andcomm-P3.35-L1  313  andassoc-P3.36-L1  315  andassoc-P3.36-L2  316  subandl-P3.42a-L1  338  andasim-P3.46-L1  354  nandil-P4.3a  373  joinimandinc-P4.8a  397  joinimandres-P4.8b  400  joinimor-P4.8c  403  sepimandr-P4.9a  406  dmorgarev-L4.2  453  andoveror-P4.27-L2  460  oroverand-P4.27-L3  462  oroverbiint-P4.28d  471  imasandint-P4.33b  490  biasandorint-P4.34b  492
  Copyright terms: Public domain W3C validator