| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > sepimandr-P4.9a | |||
| Description: Separate Right Conjunction from Implication. † |
| Ref | Expression |
|---|---|
| sepimandr-P4.9a.1 | ⊢ (𝛾 → (𝜑 → (𝜓 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| sepimandr-P4.9a | ⊢ (𝛾 → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . . 5 ⊢ ((𝛾 ∧ 𝜑) → 𝜑) | |
| 2 | sepimandr-P4.9a.1 | . . . . . 6 ⊢ (𝛾 → (𝜑 → (𝜓 ∧ 𝜒))) | |
| 3 | 2 | rcp-NDIMP1add1 208 | . . . . 5 ⊢ ((𝛾 ∧ 𝜑) → (𝜑 → (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | ndime-P3.6 171 | . . . 4 ⊢ ((𝛾 ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
| 5 | 4 | ndander-P3.9 174 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜓) |
| 6 | 5 | rcp-NDIMI2 224 | . 2 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 7 | 4 | ndandel-P3.8 173 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜒) |
| 8 | 7 | rcp-NDIMI2 224 | . 2 ⊢ (𝛾 → (𝜑 → 𝜒)) |
| 9 | 6, 8 | ndandi-P3.7 172 | 1 ⊢ (𝛾 → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: sepimandr-P4.9a.RC 407 sepimandr-P4.9a.CL 408 |
| Copyright terms: Public domain | W3C validator |