PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimandr-P4.9a

Theorem sepimandr-P4.9a 406
Description: Separate Right Conjunction from Implication.
Hypothesis
Ref Expression
sepimandr-P4.9a.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
sepimandr-P4.9a (𝛾 → ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem sepimandr-P4.9a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((𝛾𝜑) → 𝜑)
2 sepimandr-P4.9a.1 . . . . . 6 (𝛾 → (𝜑 → (𝜓𝜒)))
32rcp-NDIMP1add1 208 . . . . 5 ((𝛾𝜑) → (𝜑 → (𝜓𝜒)))
41, 3ndime-P3.6 171 . . . 4 ((𝛾𝜑) → (𝜓𝜒))
54ndander-P3.9 174 . . 3 ((𝛾𝜑) → 𝜓)
65rcp-NDIMI2 224 . 2 (𝛾 → (𝜑𝜓))
74ndandel-P3.8 173 . . 3 ((𝛾𝜑) → 𝜒)
87rcp-NDIMI2 224 . 2 (𝛾 → (𝜑𝜒))
96, 8ndandi-P3.7 172 1 (𝛾 → ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  sepimandr-P4.9a.RC  407  sepimandr-P4.9a.CL  408
  Copyright terms: Public domain W3C validator