PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimor-P4.8c.CL

Theorem joinimor-P4.8c.CL 405
Description: Closed Form of joinimor-P4.8c 403.
Assertion
Ref Expression
joinimor-P4.8c.CL (((𝜑𝜓) ∨ (𝜒𝜗)) → ((𝜑𝜒) → (𝜓𝜗)))

Proof of Theorem joinimor-P4.8c.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (((𝜑𝜓) ∨ (𝜒𝜗)) → ((𝜑𝜓) ∨ (𝜒𝜗)))
21joinimor-P4.8c 403 1 (((𝜑𝜓) ∨ (𝜒𝜗)) → ((𝜑𝜒) → (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoveror-P4.29-L1  473  rimoverand-P4.31-L1  480
  Copyright terms: Public domain W3C validator