PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoveror-P4.29-L1

Theorem imoveror-P4.29-L1 473
Description: Lemma for imoveror-P4.29b 474 and imoverorint-P4.29c 475.
Assertion
Ref Expression
imoveror-P4.29-L1 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem imoveror-P4.29-L1
StepHypRef Expression
1 joinimor-P4.8c.CL 405 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → ((𝜑𝜑) → (𝜓𝜒)))
2 idempotand-P4.25a 450 . . . 4 ((𝜑𝜑) ↔ 𝜑)
32subiml-P3.40a.RC 326 . . 3 (((𝜑𝜑) → (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))
43rcp-NDBIEF0 240 . 2 (((𝜑𝜑) → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
51, 4syl-P3.24.RC 260 1 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoveror-P4.29b  474  imoverorint-P4.29c  475
  Copyright terms: Public domain W3C validator