| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imoveror-P4.29-L1 | |||
| Description: Lemma for imoveror-P4.29b 474 and imoverorint-P4.29c 475. † |
| Ref | Expression |
|---|---|
| imoveror-P4.29-L1 | ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinimor-P4.8c.CL 405 | . 2 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) → ((𝜑 ∧ 𝜑) → (𝜓 ∨ 𝜒))) | |
| 2 | idempotand-P4.25a 450 | . . . 4 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | |
| 3 | 2 | subiml-P3.40a.RC 326 | . . 3 ⊢ (((𝜑 ∧ 𝜑) → (𝜓 ∨ 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
| 4 | 3 | rcp-NDBIEF0 240 | . 2 ⊢ (((𝜑 ∧ 𝜑) → (𝜓 ∨ 𝜒)) → (𝜑 → (𝜓 ∨ 𝜒))) |
| 5 | 1, 4 | syl-P3.24.RC 260 | 1 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∨ 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: imoveror-P4.29b 474 imoverorint-P4.29c 475 |
| Copyright terms: Public domain | W3C validator |