PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subiml-P3.40a.RC

Theorem subiml-P3.40a.RC 326
Description: Inference Form of subiml-P3.40a 325.
Hypothesis
Ref Expression
subiml-P3.40a.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subiml-P3.40a.RC ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem subiml-P3.40a.RC
StepHypRef Expression
1 subiml-P3.40a.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subiml-P3.40a 325 . 2 (⊤ → ((𝜑𝜒) ↔ (𝜓𝜒)))
43ndtruee-P3.18 183 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465  imoverand-P4.29a  472  imoveror-P4.29-L1  473  peirce2exclmid-P4.41b  513  lemma-L5.01a  600  qcallimrv-P5  671  qceximrv-P5  672  qcallimr-P6  757  qceximr-P6  758  nfrexgencl-L6  813  nfrex2d-P6  820  qcallimr-P8  1122  qceximr-P8  1123
  Copyright terms: Public domain W3C validator