| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subiml-P3.40a.RC | |||
| Description: Inference Form of subiml-P3.40a 325. † |
| Ref | Expression |
|---|---|
| subiml-P3.40a.RC.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subiml-P3.40a.RC | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subiml-P3.40a.RC.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | subiml-P3.40a 325 | . 2 ⊢ (⊤ → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: oroverim-P4.28-L1 465 imoverand-P4.29a 472 imoveror-P4.29-L1 473 peirce2exclmid-P4.41b 513 lemma-L5.01a 600 qcallimrv-P5 671 qceximrv-P5 672 qcallimr-P6 757 qceximr-P6 758 nfrexgencl-L6 813 nfrex2d-P6 820 qcallimr-P8 1122 qceximr-P8 1123 |
| Copyright terms: Public domain | W3C validator |