| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qceximr-P8 | |||
| Description: Quantifier Collection Law: Existential Quantifier Right on Implication. |
| Ref | Expression |
|---|---|
| qceximr-P8.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| qceximr-P8 | ⊢ ((𝜑 → ∃𝑥𝜓) ↔ ∃𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qimeqex-P7 1056 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 1 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ ∃𝑥(𝜑 → 𝜓)) |
| 3 | qceximr-P8.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | qremall-P8 1101 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| 5 | 4 | subiml-P3.40a.RC 326 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| 6 | 2, 5 | subbil2-P4.RC 547 | 1 ⊢ ((𝜑 → ∃𝑥𝜓) ↔ ∃𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |