HomeHome bfol.mm Proof Explorer
Theorem List (p. 12 of 12)
< Previous  Wrap >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 1101-1125   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
9.1.3  Quantifier Removal / Swapping Laws.
 
Theoremqremall-P8 1101 Universal Quantifier Removal (non-freeness condition).
𝑥𝜑       (∀𝑥𝜑𝜑)
 
Theoremqremall-P8.VR 1102* qremall-P8 1101 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(∀𝑥𝜑𝜑)
 
Theoremqremex-P8 1103 Existential Quantifier Removal (non-freeness condition).
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theoremqremex-P8.VR 1104* qremex-P8 1103 with variable restriction.

'𝑥' cannot occur in '𝜑'

(∃𝑥𝜑𝜑)
 
Theoremqswap-P8 1105 Swap Quantifiers (non-freeness condition).
𝑥𝜑       (∃𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremqswap-P8.VR 1106* qswap-P8 1105 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(∃𝑥𝜑 ↔ ∀𝑥𝜑)
 
9.1.4  Other Effective Non-Freeness Properties.
 
Theoremnfrthm-P8 1107 Every Variable is ENF in a Theorem.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrthm-P7 926 instead.

𝜑       𝑥𝜑
 
Theoremnfrcond-P8 1108 ENF in Antecedent Conditionally Not Free in Consequent.

This is actually a generalization of nfrthm-P8 1107.

𝑥𝛾    &   (𝛾𝜑)       (𝛾 → Ⅎ𝑥𝜑)
 
Theoremnfrcond-P8.VR 1109* nfrcond-P8 1108 with variable restriction.

'𝑥' cannot occur in '𝛾'.

(𝛾𝜑)       (𝛾 → Ⅎ𝑥𝜑)
 
Theoremnfrnegconv-P8 1110 Converse of ndnfrneg-P7.2 827.

This statement is not deducible with intuitionist logic.

(𝛾 → Ⅎ𝑥 ¬ 𝜑)       (𝛾 → Ⅎ𝑥𝜑)
 
Theoremnfrnegconv-P8.RC 1111 Inference Form of nfrnegconv-P8 1110.

This statement is not deducible with intuitionist logic.

𝑥 ¬ 𝜑       𝑥𝜑
 
Theoremnfrnegconv-P8.CL 1112 Closed Form of nfrnegconv-P8 1110.

This statement is not deducible with intuitionist logic.

(Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
 
Theoremnfrnegbi-P8 1113 Biconditional Combining ndnfrneg-P7.2 827 and nfrnegconv-P8 1110.

This statement is not deducible with intuitionist logic.

(Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
 
9.1.5  Define Effective Non-Freeness Within a Term.
 
9.1.5.1  Syntax Definition.
 
Syntaxwff-nfreet 1114 Extend WFF definition to include the effective non-freeness in a term predicate 't𝑥'.
wff t𝑥 𝑡
 
9.1.5.2  Justification Theorem.
 
Theoremnfreetjust-P8 1115* Justification Theorem for df-nfreet-D8.1 1116.

'𝑦' and '𝑧' are distinct from all other variables.

(∀𝑦𝑥 𝑦 = 𝑡 ↔ ∀𝑧𝑥 𝑧 = 𝑡)
 
9.1.5.3  Formal Definition.
 
Definitiondf-nfreet-D8.1 1116* Definition of Effictive Non-Freeness in a Term, 't𝑥 𝑡'.

'𝑦' is distinct from all other variables.

(Ⅎt𝑥 𝑡 ↔ ∀𝑦𝑥 𝑦 = 𝑡)
 
9.1.6  Effective Non-Freeness Over Atomic Terms.
 
Theoremnfrzero-P8 1117 Any variable '𝑥' is ENF in a constant term.
t𝑥 0
 
Theoremnfrvar-P8 1118* Any variable '𝑥' is ENF in term consisting of some variable, '𝑦', that is different from '𝑥'.
t𝑥 𝑦
 
9.1.7  Effective Non-Freeness Over Functional Terms.
 
Theoremnfrsucc-P8 1119 If '𝑥' is ENF in a term '𝑡', then '𝑥' is also ENF in its successor, 's‘𝑡'.
t𝑥 𝑡       t𝑥 s‘𝑡
 
Theoremnfradd-P8 1120 If '𝑥' is ENF in the terms '𝑡₁' and '𝑡₂', then '𝑥' is ENF in the sum term, '(𝑡₁ + 𝑡₂)'.
t𝑥 𝑡₁    &   t𝑥 𝑡₂       t𝑥(𝑡₁ + 𝑡₂)
 
Theoremnfrmult-P8 1121 If '𝑥' is ENF in the terms '𝑡₁' and '𝑡₂', then '𝑥' is ENF in the product term, '(𝑡₁𝑡₂)'.
t𝑥 𝑡₁    &   t𝑥 𝑡₂       t𝑥(𝑡₁𝑡₂)
 
9.2  More Quantifier Laws.
 
9.2.1  Quantifier Collection Laws.
 
9.2.1.1  Implication.
 
Theoremqcallimr-P8 1122 Quantifier Collection Law: Universal Quantifier Right on Implication.
𝑥𝜑       ((𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓))
 
Theoremqceximr-P8 1123 Quantifier Collection Law: Existential Quantifier Right on Implication.
𝑥𝜑       ((𝜑 → ∃𝑥𝜓) ↔ ∃𝑥(𝜑𝜓))
 
Theoremqcalliml-P8 1124 Quantifier Collection Law: Universal Quantifier Left on Implication.
𝑥𝜓       ((∀𝑥𝜑𝜓) ↔ ∃𝑥(𝜑𝜓))
 
Theoremqceximl-P8 1125 Quantifier Collection Law: Existential Quantifier Left on Implication.
𝑥𝜓       ((∃𝑥𝜑𝜓) ↔ ∀𝑥(𝜑𝜓))
    < Previous  Wrap >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Wrap >