PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrzero-P8

Theorem nfrzero-P8 1117
Description: Any variable '𝑥' is ENF in a constant term.
Assertion
Ref Expression
nfrzero-P8 t𝑥 0

Proof of Theorem nfrzero-P8
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ndnfrv-P7.1 826 . . 3 𝑥 𝑦 = 0
21axGEN-P7 933 . 2 𝑦𝑥 𝑦 = 0
3 df-nfreet-D8.1 1116 . 2 (Ⅎt𝑥 0 ↔ ∀𝑦𝑥 𝑦 = 0)
42, 3bimpr-P4.RC 534 1 t𝑥 0
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  0term_zero 2   = wff-equals 6  wff-forall 8  wff-nfree 681  twff-nfreet 1114
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716  df-nfreet-D8.1 1116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator