| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrzero-P8 | |||
| Description: Any variable '𝑥' is ENF in a constant term. † |
| Ref | Expression |
|---|---|
| nfrzero-P8 | ⊢ Ⅎt𝑥 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrv-P7.1 826 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 0 | |
| 2 | 1 | axGEN-P7 933 | . 2 ⊢ ∀𝑦Ⅎ𝑥 𝑦 = 0 |
| 3 | df-nfreet-D8.1 1116 | . 2 ⊢ (Ⅎt𝑥 0 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 0) | |
| 4 | 2, 3 | bimpr-P4.RC 534 | 1 ⊢ Ⅎt𝑥 0 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 0term_zero 2 = wff-equals 6 ∀wff-forall 8 Ⅎwff-nfree 681 Ⅎtwff-nfreet 1114 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 df-nfreet-D8.1 1116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |