PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bimpr-P4.RC

Theorem bimpr-P4.RC 534
Description: Inference Form of bimpr-P4 533.
Hypotheses
Ref Expression
bimpr-P4.RC.1 𝜓
bimpr-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
bimpr-P4.RC 𝜑

Proof of Theorem bimpr-P4.RC
StepHypRef Expression
1 bimpr-P4.RC.1 . . . 4 𝜓
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜓)
3 bimpr-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4bimpr-P4 533 . 2 (⊤ → 𝜑)
65ndtruee-P3.18 183 1 𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  axL5ex-P5  613  axL6ex-P5  625  exgenallw-P6  680  gennfrw-P6  685  nfrim-P6  689  nfrand-P6  690  nfrbi-P6  691  nfrex2w-P6  695  nfrexgenw-P6  696  exi-P6  718  exgenall-P6  732  gennfr-P6  734  nfrexgen-P6  735  cbvex-P6  752  qcexandl-P6  762  lemma-L6.06a  766  psubthm-P6  786  nfrnfr-P6  821  axL6ex-P7  925  nfrthm-P7  926  nfrzero-P8  1117  nfrvar-P8  1118  nfrsucc-P8  1119  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator