| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bimpr-P4.RC | |||
| Description: Inference Form of bimpr-P4 533. † |
| Ref | Expression |
|---|---|
| bimpr-P4.RC.1 | ⊢ 𝜓 |
| bimpr-P4.RC.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bimpr-P4.RC | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bimpr-P4.RC.1 | . . . 4 ⊢ 𝜓 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝜓) |
| 3 | bimpr-P4.RC.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | bimpr-P4 533 | . 2 ⊢ (⊤ → 𝜑) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ 𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 |
| This theorem is referenced by: axL5ex-P5 613 axL6ex-P5 625 exgenallw-P6 680 gennfrw-P6 685 nfrim-P6 689 nfrand-P6 690 nfrbi-P6 691 nfrex2w-P6 695 nfrexgenw-P6 696 exi-P6 718 exgenall-P6 732 gennfr-P6 734 nfrexgen-P6 735 cbvex-P6 752 qcexandl-P6 762 lemma-L6.06a 766 psubthm-P6 786 nfrnfr-P6 821 axL6ex-P7 925 nfrthm-P7 926 nfrzero-P8 1117 nfrvar-P8 1118 nfrsucc-P8 1119 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |