PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exgenall-P6

Theorem exgenall-P6 732
Description: Dual of gennall-P6 730.

See exgenallw-P6 680 for a version that requires only FOL axioms.

Assertion
Ref Expression
exgenall-P6 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)

Proof of Theorem exgenall-P6
StepHypRef Expression
1 gennall-P6 730 . 2 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
2 lemma-L5.01a 600 . 2 ((∃𝑥𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑))
31, 2bimpr-P4.RC 534 1 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  gennfr-P6  734  gennfrcl-L6  812
  Copyright terms: Public domain W3C validator