| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exgenall-P6 | |||
| Description: Dual of gennall-P6 730.
See exgenallw-P6 680 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| exgenall-P6 | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennall-P6 730 | . 2 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 2 | lemma-L5.01a 600 | . 2 ⊢ ((∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)) | |
| 3 | 1, 2 | bimpr-P4.RC 534 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: gennfr-P6 734 gennfrcl-L6 812 |
| Copyright terms: Public domain | W3C validator |