| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > gennfr-P6 | |||
| Description: General for ⇒ ENF in.
If '𝜑' is general for '𝑥', then '𝑥' is effectively not free in '𝜑'. See gennfrw-P6 685 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| gennfr-P6.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| gennfr-P6 | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennfr-P6.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | alloverimex-P5.RC.GEN 603 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑) |
| 3 | exgenall-P6 732 | . . 3 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 4 | 2, 3 | syl-P3.24.RC 260 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 5 | dfnfreealt-P6 683 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 6 | 4, 5 | bimpr-P4.RC 534 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: exgennfr-P6 736 genall-P6 737 nfrall1-P6 741 nfrex1-P6 742 nfrall2-P6 743 |
| Copyright terms: Public domain | W3C validator |