PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennfr-P6

Theorem gennfr-P6 734
Description: General for ENF in.

If '𝜑' is general for '𝑥', then '𝑥' is effectively not free in '𝜑'.

See gennfrw-P6 685 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
gennfr-P6.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
gennfr-P6 𝑥𝜑

Proof of Theorem gennfr-P6
StepHypRef Expression
1 gennfr-P6.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21alloverimex-P5.RC.GEN 603 . . 3 (∃𝑥𝜑 → ∃𝑥𝑥𝜑)
3 exgenall-P6 732 . . 3 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
42, 3syl-P3.24.RC 260 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
5 dfnfreealt-P6 683 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
64, 5bimpr-P4.RC 534 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  exgennfr-P6  736  genall-P6  737  nfrall1-P6  741  nfrex1-P6  742  nfrall2-P6  743
  Copyright terms: Public domain W3C validator