PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrexgen-P6

Theorem nfrexgen-P6 735
Description: Dual Form of nfrgen-P6 733.

See nfrexgenw-P6 696 for a version that requires only FOL axioms.

Hypothesis
Ref Expression
nfrexgen-P6.1 𝑥𝜑
Assertion
Ref Expression
nfrexgen-P6 (∃𝑥𝜑𝜑)

Proof of Theorem nfrexgen-P6
StepHypRef Expression
1 nfrexgen-P6.1 . . . 4 𝑥𝜑
2 nfrneg-P6 688 . . . 4 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
31, 2bimpr-P4.RC 534 . . 3 𝑥 ¬ 𝜑
43nfrgen-P6 733 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
5 lemma-L5.01a 600 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
64, 5bimpr-P4.RC 534 1 (∃𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrex2-P6  744  exia-P6  746  lemma-L6.04a  749  trnsvsub-P6  763
  Copyright terms: Public domain W3C validator