| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrexgen-P6 | |||
| Description: Dual Form of nfrgen-P6 733.
See nfrexgenw-P6 696 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| nfrexgen-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexgen-P6 | ⊢ (∃𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrexgen-P6.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfrneg-P6 688 | . . . 4 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) | |
| 3 | 1, 2 | bimpr-P4.RC 534 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfrgen-P6 733 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| 5 | lemma-L5.01a 600 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 6 | 4, 5 | bimpr-P4.RC 534 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrex2-P6 744 exia-P6 746 lemma-L6.04a 749 trnsvsub-P6 763 |
| Copyright terms: Public domain | W3C validator |