PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exia-P6

Theorem exia-P6 746
Description: Introduction of Existential Quantifier as Antecedent (non-freeness condition).

This proposition is equivalent to the '' elimination rule in the natural deduction system.

Hypotheses
Ref Expression
exia-P6.1 𝑥𝜓
exia-P6.2 (𝜑𝜓)
Assertion
Ref Expression
exia-P6 (∃𝑥𝜑𝜓)

Proof of Theorem exia-P6
StepHypRef Expression
1 exia-P6.2 . . 3 (𝜑𝜓)
21alloverimex-P5.RC.GEN 603 . 2 (∃𝑥𝜑 → ∃𝑥𝜓)
3 exia-P6.1 . . 3 𝑥𝜓
43nfrexgen-P6 735 . 2 (∃𝑥𝜓𝜓)
52, 4syl-P3.24.RC 260 1 (∃𝑥𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  spliteq-P6  776  splitelof-P6  778
  Copyright terms: Public domain W3C validator