| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alloverimex-P5.RC.GEN | |||
| Description: Inference Form of alloverimex-P5 601 with Generalization.
For the deductive form with a variable restriction, see alloverimex-P5.GENV 622. For the most general form see alloverimex-P5.GENF 748. |
| Ref | Expression |
|---|---|
| alloverimex-P5.RC.GEN.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alloverimex-P5.RC.GEN | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverimex-P5.RC.GEN.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ax-GEN 15 | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) |
| 3 | 2 | alloverimex-P5.RC 602 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: subexinf-P5 608 qimeqex-P5-L1 610 exiav-P5 615 gennfrw-P6 685 nfrex2w-P6 695 trnsvsubw-P6 710 gennfr-P6 734 nfrex2-P6 744 exia-P6 746 trnsvsub-P6 763 lemma-L6.07a-L1 770 lemma-L6.07a-L2 771 |
| Copyright terms: Public domain | W3C validator |