PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P5.RC.GEN

Theorem alloverimex-P5.RC.GEN 603
Description: Inference Form of alloverimex-P5 601 with Generalization.

For the deductive form with a variable restriction, see alloverimex-P5.GENV 622. For the most general form see alloverimex-P5.GENF 748.

Hypothesis
Ref Expression
alloverimex-P5.RC.GEN.1 (𝜑𝜓)
Assertion
Ref Expression
alloverimex-P5.RC.GEN (∃𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem alloverimex-P5.RC.GEN
StepHypRef Expression
1 alloverimex-P5.RC.GEN.1 . . 3 (𝜑𝜓)
21ax-GEN 15 . 2 𝑥(𝜑𝜓)
32alloverimex-P5.RC 602 1 (∃𝑥𝜑 → ∃𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subexinf-P5  608  qimeqex-P5-L1  610  exiav-P5  615  gennfrw-P6  685  nfrex2w-P6  695  trnsvsubw-P6  710  gennfr-P6  734  nfrex2-P6  744  exia-P6  746  trnsvsub-P6  763  lemma-L6.07a-L1  770  lemma-L6.07a-L2  771
  Copyright terms: Public domain W3C validator