| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrex2w-P6 | |||
| Description: ENF Over Existential
Quantifier (different variable -
weakened form).
Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'. |
| Ref | Expression |
|---|---|
| nfrex2w-P6.1 | ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) |
| nfrex2w-P6.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrex2w-P6 | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrex2w-P6.1 | . . . . 5 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) | |
| 2 | 1 | subexv-P5 624 | . . . 4 ⊢ (𝑥 = 𝑥₁ → (∃𝑦𝜑 ↔ ∃𝑦𝜑₁)) |
| 3 | 2 | subneg-P3.39 323 | . . 3 ⊢ (𝑥 = 𝑥₁ → (¬ ∃𝑦𝜑 ↔ ¬ ∃𝑦𝜑₁)) |
| 4 | 1 | lemma-L5.05a 668 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| 5 | 1 | subneg-P3.39 323 | . . . . . . . 8 ⊢ (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁)) |
| 6 | nfrex2w-P6.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝜑 | |
| 7 | nfrneg-P6 688 | . . . . . . . . 9 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) | |
| 8 | 6, 7 | bimpr-P4.RC 534 | . . . . . . . 8 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 9 | 5, 8 | nfrgenw-P6 684 | . . . . . . 7 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| 10 | lemma-L5.01a 600 | . . . . . . 7 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 11 | 9, 10 | bimpr-P4.RC 534 | . . . . . 6 ⊢ (∃𝑥𝜑 → 𝜑) |
| 12 | 11 | alloverimex-P5.RC.GEN 603 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑦𝜑) |
| 13 | 4, 12 | syl-P3.24.RC 260 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦𝜑) |
| 14 | lemma-L5.01a 600 | . . . 4 ⊢ ((∃𝑥∃𝑦𝜑 → ∃𝑦𝜑) ↔ (¬ ∃𝑦𝜑 → ∀𝑥 ¬ ∃𝑦𝜑)) | |
| 15 | 13, 14 | bimpf-P4.RC 532 | . . 3 ⊢ (¬ ∃𝑦𝜑 → ∀𝑥 ¬ ∃𝑦𝜑) |
| 16 | 3, 15 | gennfrw-P6 685 | . 2 ⊢ Ⅎ𝑥 ¬ ∃𝑦𝜑 |
| 17 | nfrneg-P6 688 | . 2 ⊢ (Ⅎ𝑥 ¬ ∃𝑦𝜑 ↔ Ⅎ𝑥∃𝑦𝜑) | |
| 18 | 16, 17 | bimpf-P4.RC 532 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |