PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrex2w-P6

Theorem nfrex2w-P6 695
Description: ENF Over Existential Quantifier (different variable - weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypotheses
Ref Expression
nfrex2w-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
nfrex2w-P6.2 𝑥𝜑
Assertion
Ref Expression
nfrex2w-P6 𝑥𝑦𝜑
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑦,𝑥₁

Proof of Theorem nfrex2w-P6
StepHypRef Expression
1 nfrex2w-P6.1 . . . . 5 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21subexv-P5 624 . . . 4 (𝑥 = 𝑥₁ → (∃𝑦𝜑 ↔ ∃𝑦𝜑₁))
32subneg-P3.39 323 . . 3 (𝑥 = 𝑥₁ → (¬ ∃𝑦𝜑 ↔ ¬ ∃𝑦𝜑₁))
41lemma-L5.05a 668 . . . . 5 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
51subneg-P3.39 323 . . . . . . . 8 (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁))
6 nfrex2w-P6.2 . . . . . . . . 9 𝑥𝜑
7 nfrneg-P6 688 . . . . . . . . 9 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
86, 7bimpr-P4.RC 534 . . . . . . . 8 𝑥 ¬ 𝜑
95, 8nfrgenw-P6 684 . . . . . . 7 𝜑 → ∀𝑥 ¬ 𝜑)
10 lemma-L5.01a 600 . . . . . . 7 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
119, 10bimpr-P4.RC 534 . . . . . 6 (∃𝑥𝜑𝜑)
1211alloverimex-P5.RC.GEN 603 . . . . 5 (∃𝑦𝑥𝜑 → ∃𝑦𝜑)
134, 12syl-P3.24.RC 260 . . . 4 (∃𝑥𝑦𝜑 → ∃𝑦𝜑)
14 lemma-L5.01a 600 . . . 4 ((∃𝑥𝑦𝜑 → ∃𝑦𝜑) ↔ (¬ ∃𝑦𝜑 → ∀𝑥 ¬ ∃𝑦𝜑))
1513, 14bimpf-P4.RC 532 . . 3 (¬ ∃𝑦𝜑 → ∀𝑥 ¬ ∃𝑦𝜑)
163, 15gennfrw-P6 685 . 2 𝑥 ¬ ∃𝑦𝜑
17 nfrneg-P6 688 . 2 (Ⅎ𝑥 ¬ ∃𝑦𝜑 ↔ Ⅎ𝑥𝑦𝜑)
1816, 17bimpf-P4.RC 532 1 𝑥𝑦𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator