PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subexv-P5

Theorem subexv-P5 624
Description: Substitution Law for '𝑥' (variable restriction). The most general form is subex-P6 754.
Hypothesis
Ref Expression
subexv-P5.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subexv-P5 (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Distinct variable group:   𝛾,𝑥

Proof of Theorem subexv-P5
StepHypRef Expression
1 subexv-P5.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
32alloverimex-P5.GENV 622 . 2 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
41ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
54alloverimex-P5.GENV 622 . 2 (𝛾 → (∃𝑥𝜓 → ∃𝑥𝜑))
63, 5ndbii-P3.13 178 1 (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  example-E5.02a  664  example-E5.04a  675  nfrex2w-P6  695  example-E6.02a  712
  Copyright terms: Public domain W3C validator