| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subexv-P5 | |||
| Description: Substitution Law for '∃𝑥' (variable restriction). The most general form is subex-P6 754. |
| Ref | Expression |
|---|---|
| subexv-P5.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| subexv-P5 | ⊢ (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subexv-P5.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 3 | 2 | alloverimex-P5.GENV 622 | . 2 ⊢ (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| 4 | 1 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 5 | 4 | alloverimex-P5.GENV 622 | . 2 ⊢ (𝛾 → (∃𝑥𝜓 → ∃𝑥𝜑)) |
| 6 | 3, 5 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: example-E5.02a 664 example-E5.04a 675 nfrex2w-P6 695 example-E6.02a 712 |
| Copyright terms: Public domain | W3C validator |