PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E5.02a

Theorem example-E5.02a 664
Description: Hypothesis Elimination Example 2.
Assertion
Ref Expression
example-E5.02a (𝑥 = 𝑥₁ → (∀𝑦𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∀𝑦𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦)))
Distinct variable group:   𝑥,𝑥₁,𝑦,𝑧

Proof of Theorem example-E5.02a
StepHypRef Expression
1 rcp-NDASM1of1 192 . . . . 5 (𝑥 = 𝑥₁𝑥 = 𝑥₁)
21subeqr-P5 635 . . . 4 (𝑥 = 𝑥₁ → ((𝑦 + 𝑧) = 𝑥 ↔ (𝑦 + 𝑧) = 𝑥₁))
31subaddl-P5 645 . . . . 5 (𝑥 = 𝑥₁ → (𝑥 + 𝑧) = (𝑥₁ + 𝑧))
43subeql-P5 632 . . . 4 (𝑥 = 𝑥₁ → ((𝑥 + 𝑧) = 𝑦 ↔ (𝑥₁ + 𝑧) = 𝑦))
52, 4subord-P3.43c 350 . . 3 (𝑥 = 𝑥₁ → (((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦)))
65subexv-P5 624 . 2 (𝑥 = 𝑥₁ → (∃𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∃𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦)))
76suballv-P5 623 1 (𝑥 = 𝑥₁ → (∀𝑦𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∀𝑦𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   + term-add 4   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-or 144  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator