| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > example-E5.02a | |||
| Description: Hypothesis Elimination Example 2. |
| Ref | Expression |
|---|---|
| example-E5.02a | ⊢ (𝑥 = 𝑥₁ → (∀𝑦∃𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∀𝑦∃𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . . . . 5 ⊢ (𝑥 = 𝑥₁ → 𝑥 = 𝑥₁) | |
| 2 | 1 | subeqr-P5 635 | . . . 4 ⊢ (𝑥 = 𝑥₁ → ((𝑦 + 𝑧) = 𝑥 ↔ (𝑦 + 𝑧) = 𝑥₁)) |
| 3 | 1 | subaddl-P5 645 | . . . . 5 ⊢ (𝑥 = 𝑥₁ → (𝑥 + 𝑧) = (𝑥₁ + 𝑧)) |
| 4 | 3 | subeql-P5 632 | . . . 4 ⊢ (𝑥 = 𝑥₁ → ((𝑥 + 𝑧) = 𝑦 ↔ (𝑥₁ + 𝑧) = 𝑦)) |
| 5 | 2, 4 | subord-P3.43c 350 | . . 3 ⊢ (𝑥 = 𝑥₁ → (((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦))) |
| 6 | 5 | subexv-P5 624 | . 2 ⊢ (𝑥 = 𝑥₁ → (∃𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∃𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦))) |
| 7 | 6 | suballv-P5 623 | 1 ⊢ (𝑥 = 𝑥₁ → (∀𝑦∃𝑧((𝑦 + 𝑧) = 𝑥 ∨ (𝑥 + 𝑧) = 𝑦) ↔ ∀𝑦∃𝑧((𝑦 + 𝑧) = 𝑥₁ ∨ (𝑥₁ + 𝑧) = 𝑦))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 + term-add 4 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L9-addl 23 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |