PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subeql-P5

Theorem subeql-P5 632
Description: Left Substitution Law for '=' .
Hypothesis
Ref Expression
subeql-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
subeql-P5 (𝛾 → (𝑡 = 𝑤𝑢 = 𝑤))

Proof of Theorem subeql-P5
StepHypRef Expression
1 subeql-P5.1 . . 3 (𝛾𝑡 = 𝑢)
2 ax-L7 19 . . . 4 (𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))
32rcp-NDIMP0addall 207 . . 3 (𝛾 → (𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤)))
41, 3ndime-P3.6 171 . 2 (𝛾 → (𝑡 = 𝑤𝑢 = 𝑤))
51eqsym-P5 627 . . 3 (𝛾𝑢 = 𝑡)
6 ax-L7 19 . . . 4 (𝑢 = 𝑡 → (𝑢 = 𝑤𝑡 = 𝑤))
76rcp-NDIMP0addall 207 . . 3 (𝛾 → (𝑢 = 𝑡 → (𝑢 = 𝑤𝑡 = 𝑤)))
85, 7ndime-P3.6 171 . 2 (𝛾 → (𝑢 = 𝑤𝑡 = 𝑤))
94, 8ndbii-P3.13 178 1 (𝛾 → (𝑡 = 𝑤𝑢 = 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subeql-P5.CL  633  subeqd-P5  637  example-E5.02a  664  example-E5.04a  675  ndsubeql-P7.22a  847
  Copyright terms: Public domain W3C validator