PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqtrns-P5.CL

Theorem eqtrns-P5.CL 631
Description: Closed Form of eqtrns-P5 630.
Assertion
Ref Expression
eqtrns-P5.CL ((𝑡 = 𝑢𝑢 = 𝑤) → 𝑡 = 𝑤)

Proof of Theorem eqtrns-P5.CL
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 ((𝑡 = 𝑢𝑢 = 𝑤) → 𝑡 = 𝑢)
2 rcp-NDASM2of2 194 . 2 ((𝑡 = 𝑢𝑢 = 𝑤) → 𝑢 = 𝑤)
31, 2eqtrns-P5 630 1 ((𝑡 = 𝑢𝑢 = 𝑤) → 𝑡 = 𝑤)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  spliteq-P6-L1  775
  Copyright terms: Public domain W3C validator